Chapter 10: Measuring Stars

Chapter 10 Reading Assignment due today at 10:45am
Chapter 11 Reading Assignment due Friday, October 5th

Are your grades in Canvas correct???

Office Hours

Mon 12-1pm	Zane
Tues 1:30-3pm	me
Tues 5-6pm	Randall
Wed 3-4pm	Randall
Thurs 11:45a-12:45pm	Zane
Fri 12-1pm	me
me: INSCC 320	
Zane/Randall: JFB 325	

What's easy to measure for stars?

- Their positions on the celestial sphere
- Their spectra (brightness as a function of wavelength)
- ~Changes in position and spectrum~

What's hard to measure for stars?

- Their distance
- Their size (resolving them)
- Their mass

How do we measure distances on the Earth?

Parallax

1) Calibration: hold your pinky finger at arm's length, close one eye, and measure its width (this is about 1 degree in angle)

Example: Gerald is about 1.5 units long

Parallax

2) Close your left eye and center a finger or pen on the "1" line

Parallax

3) Open your left eye, close your right eye, and measure how far your finger moved

Example: Gerald appeared to move 9.25 units

Parallax

4) Divide the apparent movement by the width of your pinky to get the angle in degrees

Example: 9.25 / $1.5=6.2$ degrees

Parallax

5) Divide 110 inches by the number of degrees to get the distance to your finger!

Example: 110 inches / 6.2 degrees ~ 18 inches

Parallax

5) Divide 110 inches by the number of degrees to get the distance to your finger!

Parallax

Place your finger about 1 foot away and repeat the test. What distance did you get?

Parallax

Which star is the most luminous?

Distance and Brightness gives Luminosity

A
Which case for the red star would have the larger parallax?

B
(b)

What's easy to measure for stars?

- Their positions on the celestial sphere
- Their spectra (brightness as a function of wavelength)
- ~Changes in position and spectrum~

What's hard to measure for stars?

- Their distance
- Their size (resolving them)
- Their mass

Emission and Absorption Lines

Each atom has a unique set of energy levels

You can find a book on one shelf or another, but not in between.

We use energy level diagrams to represent the allowed energy states of an atom.
:

Remember: Light is "Quantized"

(a)

You start with 16 cents: a dime, a nickel, and a penny

You give away the nickel.

You now have 11 cents. You never had any amount between 16 and 11 cents. You instantly "transitioned" from having more money to having less money, without ever having an intermediate amount of money.
(b)

..by emitting a photon that carries off the extra energy, $E_{2}-E_{1}$.

Spectra Lab: Emission Tubes

ASTRUPHYS $1060: 3$ The Universe	
Chapter 10: Measuring Stars	
	mammemm
	atimememex

What's easy to measure for stars?

- Their positions on the celestial sphere
- Their spectra (brightness as a function of wavelength)
- ~Changes in position and spectrum~

What's hard to measure for stars?

- Their distance
- Their size (resolving them)
- Their mass

Spectra Lab: Emission Tubes

(a) Energy states of the hydrogen atom

(b) Visible emission spectrum from hydrogen

Wavelength, $\lambda(\mathrm{nm})$
(c) Hydrogen emission spectrum (intensity vs. wavelength plot)
(d) Emission spectra for helium, mercury,

Each type of atom has a neon, and sodium

Spectra Lab: Blackbody Emission

If you see a star bluer than the sun, would you expect it to have a lower or higher luminosity?

If a star is very faint, what color would you expect it to be?

Spectra Lab: Blackbody Emission

Typical stellar spectrum has many absorption lines, which we graph

What kind of spectrum does the Moon have?

A) Emission Line
B) Blackbody
C) Absorption Line

Annie Jump Cannon Classifies the Stars

- one of "Pickering's Women," a Harvard "Calculator"
- part of the effort to catalog every star in the sky down to 9th magnitude
- defined the classification scheme for stellar spectra
- manually classified over 350,000 stars
- realized stellar types correlated with temperature (but not in the original order)

If temperature is what we want, why use spectra?

Dust preferentially absorbs bluer light (uniformly), so a star's color will change (but the relative strengths of its lines will not)

Color and temperature are connected

Stefan-Boltzmann Law:

Binary Stars

Spectroscopic Binary

A spectroscopic binary is where there is evidence of orbital motion in the spectral features due to the Doppler effect

Weighing stars in a Binary

 center of mass.

Time $=0$

$1 / 4 \times$ period

$1 \times$ period

What's easy to measure for stars?

- Their positions on the celestial sphere
- Their spectra (brightness as a function of wavelength)
- ~Changes in position and spectrum~

What's hard to measure for stars?

- Their distance
- Their size (resolving them)
- Their mass

Hertzsprung-Russell (HR) Diagram

Luminosity (intrinsic brightness) on the y-axis

Spectral Type, Color, Temperature on the x -axis

Hot stars
are blue.
are blue.

Globular Cluster Color-Magnitude Diagram

Gaia CMDs

