

Chapter 12: Evolution of Low Mass Stars

Chapter 12 Reading Assignment due Wednesday at 10:45am

In-class/HW Assignment due now!

Turn in extra credit planetarium reports up front (not "due" today, but please turn in this week if you went)

ASTR/PHYS 1060: The Universe

Are your grades in Canvas correct???

Midterms available up front

Age Color Luminosity **Spectral Type** Mass Temperature Size

ASTR/PHYS 1060: The Universe

Stellar Properties

Which of these is most important?

ASTR/PHYS 1060: The Universe

Stellar Properties

Size

Luminosity depends on mass

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 12

4

Low Mass M K G F A

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 12

В

Why are fainter (and less massive) stars more common than brighter ones?

ASTR/PHYS 1060: The Universe

A) They live longer

B) They form more frequently

C) They aren't more common, we just see them more easily

The future of our Sun and the evolution of low-mass stars

ASTR/PHYS 1060: The Universe

Chapter 12: Evolution of Low Mass Stars

Chapter 12 Reading Assignment due now!

Turn in extra credit planetarium reports up front (not "due" today, but please turn in this week if you went)

ASTR/PHYS 1060: The Universe

Are your grades in Canvas correct???

Midterms available up front

Main Sequence Lifetime= $1 \times 10^{10} \frac{\text{Mass} [M_{\odot}]}{\text{Luminosity} [L_{\odot}]}$ years

Spectral	Surface	Mass	Luminosity	Main Sequence
Type	Temperature [K]	$[M_{\odot}]$	$[L_{\odot}]$	Lifetime [years]
B0	30000	18	20000	9x10 ⁶
A5	8600	2	20	1x10 ⁹
G2	5800	1	1	1×10^{10}
K5	4600	0.7	0.16	$4x10^{10}$
M5	3100	0.2	0.008	$3x10^{11}$

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 12

10

Main Sequence Power: Hydrogen Core Burning Temperature = 5800 K Luminosity = 1 L_{Sun} Lifetime = 10 billion years

ASTR/PHYS 1060: The Universe

Nonburning envelope

drogenburning core

Fall 2018: Chapter 12

11

Red Giant BranchPower: Hydrogen Shell BurningFinal Temperature = 3200 KFinal Luminosity = $1000 \text{ L}_{\text{Sun}}$ Lifetime = 200 million years

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Helium Burning or Horizontal Branch **Power: Helium (into Carbon) Core Burning** + Hydrogen shell burning Temperature = 4500 K Luminosity = 100 L_{Sun} Lifetime = 100 million years

Asymptotic Giant Branch Power: Helium shell burning + Hydrogen shell burning Final Temperature = 3000 K Final Luminosity = 5000 L_{Sun} Lifetime = 1 million years

ASTR/PHYS 1060: The Universe

ASYMPTOTIC GIANT BRANCH STAR Nonburning degenerate carbon ash core He-burning shell H-burning shell Nonburning hydrogen envelope

Fall 2018: Chapter 12

14

Planetary Nebulae outer atmosphere ejected by radiation from the core

ASTR/PHYS 1060: The Universe

White Dwarf

Power: None Temperature = 15000 K Luminosity = 0.001 L_{Sun} Lifetime = 1 billion years (to cool down to ~7000 K)

ASTR/PHYS 1060: The Universe

Chapter 12: Evolution of Low Mass Stars

Chapter 13 Reading Assignment due Monday, October 22nd

Makeup in-class assignment from Wednesday online, due on Monday (for late credit)

ASTR/PHYS 1060: The Universe

Are your grades in Canvas correct???

Midterms available up front

Turn in extra credit planetarium reports up front (not "due" today, but please turn in this week if you went)

17

Lifetime as a function of mass

Main Sequence Lifetime=

 $\frac{L_{\rm MS}}{L_{\odot}} =$

Main Sequence Lifetime

Main Sequence Lifetim

ASTR/PHYS 1060: The Universe

$$1 \times 10^{10} \frac{\text{Mass} [M_{\odot}]}{\text{Luminosity} [L_{\odot}]} \text{ years}$$
$$\left(\frac{M_{\text{MS}}}{M_{\odot}}\right)^{3.5}$$

$$he = 10^{10} \frac{M_{\rm MS}/M_{\odot}}{(M_{\rm MS}/M_{\odot})^{3.5}}$$
 years

$$ne = 10^{10} \left(\frac{M_{\rm MS}}{M_{\odot}} \right)^{-2.5}$$
 years

ASTR/PHYS 1060: The Universe

HELIUM FLASH

Runaway He burning: The degenerate helium core explodes within the star.

ASTR/PHYS 1060: The Universe

ASYMPTOTIC GIANT BRANCH STAR

Fall 2018: Chapter 12

ASTR/PHYS 1060: The Universe

PLANETARY NEBULA EJECTION

Degenerate carbon core He-burning shell H-burning shell

Nonburning envelope

ASTR/PHYS 1060: The Universe

Future Evolution of the Sun

Again, this time with feeling!

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Size changes along with temperature

The universe is about 13 billion years old. If I see a 0.7 solar mass star, what phase of evolution will it be in?

ASTR/PHYS 1060: The Universe

A) Main Sequence **B) Red Giant Branch C)** Helium Burning **D)** Asymptotic Giant Branch

How do we know the different stages of a star's life? We obviously have not been observing stars for long enough to see it go through all the stages.

ASTR/PHYS 1060: The Universe

Star Clusters: stars of many masses born at the same time

1

Which of these star clusters is the oldest?

B

A

ASTR/PHYS 1060: The Universe

C

Theory (red line) & **Observations (white dots)**

We can make a model of any star based on its mass and age

Which stars in this cluster are the most massive?

Because stars in clusters form at the same time, and a star's evolution is determined primarily by its mass, we can observe many clusters and figure out how stars evolve

Two low-mass mainsequence stars orbit their center of mass.

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 12

33

The more massive star 1 begins to evolve...

ASTR/PHYS 1060: The Universe

... until it overfills its Roche lobe and begins transferring mass onto its companion, star 2.

Star 2 gains mass, becoming a hotter, more luminous mainsequence star.

ASTR/PHYS 1060: The Universe

White dwarf

When star 2 evolves beyond the main sequence, it too overfills its Roche lobe and begins transferring mass onto its white dwarf companion.

ASTR/PHYS 1060: The Universe

A "nova" is what?

- A) Material from Star 2 hits the surface of the white dwarf, causing it to heat up
- Material from Star 2 accumulates on the B) surface until it's hot enough to burn (fuse H -> He)
- Enough material falls on the white dwarf C) to cause the entire star to explode

ASTR/PHYS 1060: The Universe

If star 1 survives, two white dwarfs are eventually left behind...

ASTR/PHYS 1060: The Universe

...but if star 1 explodes as a Type la supernova, star 2 remains as an isolated giant evolving to become a lone white dwarf.

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 12

40

Type la Supernovae

If the white dwarf mass exceeds the Chandrasekhar limit, it begins to collapse...

...pushing up the temperature until carbon ignites and burns explosively.

ASTR/PHYS 1060: The Universe

The Type Ia supernova consumes the white dwarf completely.

