

Chapter 13: High Mass Star Evolution and their Remnants: NSs and BHs

Chapter 13 Reading Assignment due now!

Makeup in-class assignment from Wednesday due now (for late credit)

ASTR/PHYS 1060: The Universe

Are your grades in Canvas correct???

Midterms available up front

Turn in extra credit planetarium and public observing reports up front when complete

H Burning in High Mass Stars: CNO Cycle

ASTR/PHYS 1060: The Universe

High Mass Stars = High Core Temps = CNO

ASTR/PHYS 1060: The Universe

Evolution of High Mass Stars

Time spent on the Main Sequence is short: why?

- A) CNO is much more efficient
- B) Massive stars use up their fuel more quickly
- C) Not all the hydrogen in the core gets burned
- D) The core is much smaller than a low mass star

ASTR/PHYS 1060: The Universe

Based on this graph, what do you think the heaviest element is that is fused inside of stars?

ASTR/PHYS 1060: The Universe

A) Carbon B) Iron C) Lead D) Uranium

Aside: Standard Candles

ASTR/PHYS 1060: The Universe

Two low-mass mainsequence stars orbit their center of mass.

ASTR/PHYS 1060: The Universe

The more massive star 1 begins to evolve...

ASTR/PHYS 1060: The Universe

... until it overfills its Roche lobe and begins transferring mass onto its companion, star 2.

Star 2 gains mass, becoming a hotter, more luminous mainsequence star.

ASTR/PHYS 1060: The Universe

White dwarf

When star 2 evolves beyond the main sequence, it too overfills its Roche lobe and begins transferring mass onto its white dwarf companion.

ASTR/PHYS 1060: The Universe

A "nova" is what?

- A) Material from Star 2 hits the surface of the white dwarf, causing it to heat up
- Material from Star 2 accumulates on the B) surface until it's hot enough to burn (fuse H -> He)
- Enough material falls on the white dwarf C) to cause the entire star to explode

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 13

If star 1 survives, two white dwarfs are eventually left behind...

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 13

...but if star 1 explodes as a Type la supernova, star 2 remains as an isolated giant evolving to become a lone white dwarf.

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 13

Type la Supernovae

If the white dwarf mass exceeds the Chandrasekhar limit, it begins to collapse...

...pushing up the temperature until carbon ignites and burns explosively.

ASTR/PHYS 1060: The Universe

The Type Ia supernova consumes the white dwarf completely.

Fall 2018: Chapter 13

Back to Massive Star Evolution

ASTR/PHYS 1060: The Universe

Eta Carinae binary star

What causes massive stars to have strong winds?

- A) High surface temperatures
- B) Light elements in their atmospheres
- C) Strong radiation pressure (from photons)
- D) Like Llamas, they're quite gassy

Type II Supernovae

 $\mathbb{M}^{\mathbb{N}}$ U Х V G R

ASTR/PHYS 1060: The Universe

 $\mathbb{M}^{\mathbb{M}}$ GXU V R

Betelgeuse: Future Supernova

... were a supernova to go off within about 30 lightyears of us, that would lead to major effects on the Earth, possibly mass extinctions. X-rays and more energetic gamma-rays from the supernova could destroy the ozone layer that protects us from solar ultraviolet rays. It also could ionize nitrogen and oxygen in the atmosphere, leading to the formation of large amounts of smog-like nitrous oxide in the atmosphere.

430 light-years away (safe distance, unless it explodes as a gamma ray burst pointed at us)

May appear as bright as the full moon, visible during the day!

ASTR/PHYS 1060: The Universe

- Mark Reid, Harvard-Smithsonian CfA

A question for Neil DeGrasse Tyson...

http://www.youtube.com/watch?v=9D05ej8u-gU

Chapter 13: High Mass Star Evolution and their Remnants: NSs and BHs

Chapter 14 Reading Assignment due on Monday (not yet in Canvas)

Turn in extra credit planetarium and public observing reports up front when complete

ASTR/PHYS 1060: The Universe

Are your grades in Canvas correct???

Midterms available up front

Type II Supernovae

Neutrinos

Type II Supernovae

ASTR/PHYS 1060: The Universe

Supernova Remnants

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Heavy elements are created in massive stars, with the heaviest elements created in and returned to interstellar space by supernovae

Created in supernovae caused by NS-NS mergers??

Number of Neutrons

ASTR/PHYS 1060: The Universe

Stellar Remnant Activity

Group Activity: Groups of 3-4 Hand in one sheet for the group **Roles**: Secretary (write on the sheet) **Spokesperson** (for class discussion) Group Leader (keep on task)

<u>Goal</u>: Contrast the end-stages of stars' lives, black holes, neutron stars, and white dwarfs.

Chapter 13: High Mass Star Evolution and their Remnants: NSs and BHs

Chapter 14 Reading Assignment due on Wednesday

Turn in extra credit planetarium and public observing reports up front when complete

Midterms available up front

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 13

Aside: what if the LHC did make a black hole?

collapse not instantaneous - the "free fall time" for the Earth to collapse, if all other forces turned off somehow, is about a half hour —> similar to if you drilled a hole through the Earth and fell unimpeded to the center

black hole would still have to grow, plus the solid Earth would take time to "hollow out"

ASTR/PHYS 1060: The Universe

this is just so wrong

Aside: what if the LHC did make a black hole?

but the LHC can't make a dangerous black hole at least —> only accelerates particles to energies of ~10 TeV (10¹⁴ eV), while cosmic rays hit the atmosphere with energies up to 100 EeV (10²⁰ eV), yet we're still here

ASTR/PHYS 1060: The Universe

crew of the Lexx visit Earth, discover it's on the brink of destruction

from the sci-fi show *Lexx*, which you should tell no one I told you existed

https://www.youtube.com/watch?v=WTKA2biEVgg

G X U V I R

Low magnetic field neutron stars and black holes are observed through accretion

ASTR/PHYS 1060: The Universe

Neutron star accreting material from a high mass star

ASTR/PHYS 1060: The Universe

How do we know black holes ACTUALLY exist in the Universe?

ASTR/PHYS 1060: The Universe

Highly suggestive results that black holes exist

Stars orbiting SMBH in center of our galaxy

ASTR/PHYS 1060: The Universe

Animation of gas falling into SMBH in M87 galaxy

Cygnus X-1: First X-ray source and confirmed black hole

Andromeda Galaxy (M31)

Fall 2018: Chapter 13

GALEX

Chapter 13: High Mass Star Evolution and their Remnants: NSs and BHs

Chapter 14 Reading Assignment due on Wednesday

Turn in extra credit planetarium and public observing reports up front when complete

Midterms available up front

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 13

To understand black holes and extreme gravity, we need help from Einstein and Hawking

But first, what do you know about black holes and/or relativity?

ASTR/PHYS 1060: The Universe

Reference Frames

In everyday experience velocities simply add...

Special Relativity (postulates)

- 1) Physical laws same for all reference frames
- 2) Speed of light is always measured to be c

ASTR/PHYS 1060: The Universe

Reference Frames

...but as v nears c, things are different.

Special Relativity (postulates)

- 1) Physical laws same for all reference frames
- 2) Speed of light is always measured to be c

ASTR/PHYS 1060: The Universe

Reference frame of planetbound observer By analogy with the ball in the panel at left, we might expect that in a planetbound observer's reference frame the light's velocity would be 1.5 c...

Reference frame
of the blue
spaceshipObservers in any reference
frame always measure the
speed of light in a vacuum to
be c, regardless of their motion! $v_{\text{light}} = c$ $oldshift<math>v_{\text{light}} = c$ oldshift<math>0.8coldshift<math>0.5coldshift

Time Dilation

Muons created by cosmic rays colliding with the atmosphere exhibit time dilation

Faster a muon is traveling, the slower time passes for it, so it survives longer before decaying

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 13

Implications of Special Relativity

E = mc² when moving, have kinetic energy -> increase your mass!

Time passes more slowly for moving reference frames

ASTR/PHYS 1060: The Universe

Speed of Light is the universal speed limit (can only approach it)

Length of moving objects contract in the direction of motion

General Relativity: analogous case for gravity

"Stationary"

. .

. .

•

A spacecraft that is "stationary" in deep space and a spacecraft that is moving at a constant velocity both represent inertial reference frames. Both are floating freely in space.

ASTR/PHYS 1060: The Universe

A spacecraft that is "stationary" in deep space and a spacecraft that is moving at a constant velocity both represent inertial reference frames. Both are floating freely in space.

General Relativity: analogous case for gravity

ASTR/PHYS 1060: The Universe

Space-time is curved

ASTR/PHYS 1060: The Universe

Gravitational Redshift

ASTR/PHYS 1060: The Universe

What are Black Holes?

Particular solutions to Einstein's equations of General Relativity

ASTR/PHYS 1060: The Universe

Inevitable end-state of ultra-dense matter

Inside the event horizon, the escape velocity is larger than the speed of light (c)

Matter inside the event horizon must fall to the center, toward the singularity

Black holes have "no hair" - defined only by their mass, charge, and spin (rotation) -> all other info about what formed it is lost

The black hole in Interstellar

called Gargantua, b/c it's supermassive (like the one in the centers of galaxies)

keeps Matthew McConaughey from "spaghettification" as he crosses the event horizon —> stellar mass black holes have huuuuuge tidal forces here that would kill you!

ASTR/PHYS 1060: The Universe

The virtual "particles," which have large quantum waveforms (uncertainty in their position is as large as the black hole), separate at a distance several times larger than the event horizon

They result mainly from space-time changing dynamically when the black hole forms, creating thermal radiation

Temperature is very tiny, but carries away energy, causing the black hole to lose mass (E=mc²), but it takes a looooong time (~10⁶⁶ years)

In a vacuum, virtual particle-antiparticle pairs

ASTR/PHYS 1060: The Universe

Black holes are not completely black after all

Emit <u>Hawking radiation</u>

Hawking himself popularized the explanation used in the textbook, but that explanation is wrong!

LIGO!

Washington state

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1

First 5 BH-BH mergers

ASTR/PHYS 1060: The Universe

BHs and NSs with known masses

Solar Masses

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 13

First NS-NS merger, explosion also seen

ASTR/PHYS 1060: The Universe

