

Chapter 2: Celestial Sphere, Seasons, Moon Phases and Eclipses

Grab an ABCD page from me if you don't have one

(Hint: it looks like this)

Reading Assignment to be completed in Canvas due on Monday, August 27th

HW1 posted to website under: http://www.physics.utah.edu/~wik/courses/astr1060fall2018/ homework.html
due on Wednesday, September 5th

Name for the Class Llama

A) Sir Jeffrey McGoat, Esq. B) Space Ranger Goat

C) Gerald "The Space Odyssey" Goat Llama D) Goaterade / Goaty McGoatFace

Orienting Ourselves on the Earth

It's all just geometry and timing

Important Points \& Planes on the Celestial Sphere

Project stars and planets on a sphere surrounding the Earth

It is fictitious, but convenient for locating objects in the sky

Orienting Yourself relative to the Celestial Sphere

https://www.youtube.com/watch?v=|JhgZBn-LHg

(Vsauce)

If the north star is directly above our goat/llama (at its zenith), where are you on the Earth?

A) North Pole
B) Anywhere on the Equator
C) Exactly at 0 degrees longitude on the Equator
D) South Pole

As Earth rotates, the stars appear to move in a counterclockwise direction around the NCP.

North Pole!

If you're 30 degrees north of the equator:

At the Equator, where you can see the entire sky:

Equator

At the equator, all stars rise and set each day.

Southern Hemisphere, same as in the north but relative to the South Celestial Pole

What causes the seasons?

100\%

In SLC, where does the Sun set on the horizon?

A) Same place every day
B) A random (but predictable) place each day
C) A different place each day of the year
D) A different place each day for half the year, then repeating that pattern in reverse the second half of the year

On what days does the Sun set in these locations?

Winter Solstice
December 21st

Fall/Spring Equinoxes
September 21st
March 20th

Summer Solstice
June 21st

Max altitude of the Sun determined by where we are on Earth and where the Earth is in its orbit

Motion of Earth around the Sun

First day of northern winter December 21

First day of northern summer
(a)

South The first day of northern winter is Pole the first day of southern summer.

The 2 reasons we have seasons

http://www.youtube.com/watch?v=Xm Cn8-DCNc

Right now!

Fall Equinox

December Solstice

Friday/Monday split

Grab an ABCD page from me if you don't have one

(Hint: it looks like this)

Reading Assignment (Chapters 1 \& 2) due in Canvas in moments (or moments ago)

New Reading Assignment (Chapter 3) due THIS Friday (August 31st, 10:45am) in Canvas

HW1 posted to website under:
http://www.physics.utah.edu/~wik/courses/astr1060fall2018/ homework.html
due on Wednesday, September 5th

STARS, GALAHIES, AND THE HIGTORU OF THE UNIVEREE

TUESDAY | AUGUST 28 | 6:00 p.m. Aline W. Skaggs Bldg. (ASB) Room 220

TUO DECADES OF EHPLORATIOU UITH THE SLOAR DIGITAL SHY SURVEY

DR: KYLE DAWSON

DR. GAIL ZASOWSKIC

If you're 30 degrees north of the equator:

Location: 40 deg N (same as SLC)

[^0]
Where would you have to be for the sun to pass directly overhead on June 21st?

A) At 23.5 degrees S latitude
B) At 23.5 degrees N latitude
C) At the north pole
D) On the equator

Aside: Eratosthenes measures the Earth's circumference in in 200 BC

The Ecliptic

The apparent path that the Sun
follows against the background
of the stars is called the ecliptic

The Ecliptic

Figure 2
Figure 1

Tonight, Vega (the brightest star in the constellation Lyra, part of the summer triangle), will set at 6:55am. What time will it set tomorrow night?

Why star rise/set times change

We need leap years because...

A) Earth's Axis is tilted
B) Amy Adams and Matthew "The Space Odyssey" Goode are delightfully funny together!
C) The direction the Earth's axis points slowly changes with time
D) Earth does not go once around the sun in exactly 365 days

We need leap years because...

How to identify a leap year

Gregorian Calendar (what we use today)

Hey you, what's your sign?

Astrology

 is
bunk!

(HINT: This will be an exam question.)

 \title{

Earth's axis wobbles like a
 \title{ \section*{Earth's axis wobbles like a top: called Precession}

 top: called Precession}}

Earth's axis wobbles like a top: called Precession

Monday/Wednesday split

Grab an ABCD page from me if you don't have one

(Hint: it looks like this)

Turn in your Moon Phases worksheet by 10:50am!

Feel free to discuss your answers with neighbors, but ABSOLUTELY NO COPYING

Reading Assignment (Chapter 3) due THIS Friday
(August 31st, 10:45am) in Canvas
HW1 posted to website under: http://www.physics.utah.edu/~wik/courses/astr1060fall2018/
homework.html
due on Wednesday, September 5th

When does the full moon rise?

A) At Noon
B) At Sunset
C) At Midnight D) At Sunrise

Can figure out roughly when the Moon will rise, given its phase, from this diagram alone

Phases of the Moon

Phases of the Moon

gibbous

crescent

Moon phases are easy to figure out once you have the right mental picture

Draw the diagram!

Galileo's observations of the phases of Venus in 1610

The apparent size of Venus correlates with its

 phase

During what phase of the moon would you see a solar eclipse (the moon eclipses the sun)?

How about a lunar eclipse (the earth eclipses the moon)?

Why isn't there an eclipse at every full and new moon?

Solar Eclipses

(a) Solar eclipse geometry (not to scale)

Lunar Eclipse

(c) Lunar eclipse geometry (not to scale)

Eclipses are rare because the moon doesn't orbit in the ecliptic

The Moon's orbit only crosses the ecliptic twice, so how many chances are there per year for a solar or lunar eclipse to occur?

Is there a "dark side" of the Moon?

Nope - but there is a "far side"

Tides

How many high tides do we have per day?

A) One B) Two
 C) Three D) Four

Tidal Locking

Tides on the Moon, caused by Earth, are stronger and have "locked" one side of the Moon toward the Earth

How long does it take the Moon to rotate?

These tidal forces are slowing down the rotation of the Earth, which means (to conserve angular momentum) that the Moon is moving away from us!

200 million years from now: a day will be 25 hours long

600 million years from now: no more total solar eclipses

The two-faced Moon, in lame Mercator projection

The reason it's two-faced is known, but how that happened is not!

The Moon's crust is thicker on the far side than the near side!

Theory 1) two proto-Moons formed from collision, which later "gently" coalesced

Theory 2) the Moon formed very close to the Earth, became tidally locked soon thereafter, and the heat from the Earth "evaporated" crust on the near side, which preferentially condensed on the cooler far side
http://www.slate.com/blogs/bad_astronomy/2014/07/01/ the_moon_s_two_faces_why_are_they_so_different.html

Seasonal Poetry

The two reasons we have seasons Are both due to the Earth's tilt, When our nearest pole

Points toward Sol
Its light shines to the hilt

And stays in the sky
Like a too-long deployed spy
At risk of committing treason!

[^0]: Copyright © Addison Wesley

