

Chapter 5: Formation of Stars and Planets

ASTR/PHYS 1060: The Universe

Gaseous Pillars · M16

PRC95-44a · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

ASTR/PHYS 1060: The Universe

HST · WFPC2

Stars form from the "interstellar medium": gas in between stars

"Pillars of Creation"

Life Cycle of Gas and Stars

ASTR/PHYS 1060: The Universe

PRC95-44a · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

ASTR/PHYS 1060: The Universe

Which region is hotter and which is colder?

What is temperature?

ASTR/PHYS 1060: The Universe

If an interstellar cloud contracts to become a star, it is due to which force?

A) electromagnetic B) nuclear **C)** gravitational D) all of the above

Ch. 5: Formation of Stars/Planets

HW2 due NOW!

Midterm 1 on Sept. 28th will cover Chapters 1-5 and lecture material

ASTR/PHYS 1060: The Universe

Moon Phases available up front if you haven't gotten yours yet

Life Cycle of Gas and Stars

ASTR/PHYS 1060: The Universe

Parcels of gas within a molecular cloud feel the gravitational attraction of all other parts of the molecular cloud...

ASTR/PHYS 1060: The Universe

If an interstellar cloud contracts to become a star, it is due to which force?

A) electromagnetic **B)** nuclear C) gravitational D) all of the above

Gravity has to overcome other forces in the cloud that want to keep it from collapsing

Fall 2018: Chapter 5

10

Gravity has to overcome other forces in the cloud that want to keep it from collapsing

Easier for gravity to do this if the mass of the cloud is:

> A)Doesn't Matter **B)Large** C)Small

Fall 2018: Chapter 5

11

Cloud doesn't collapse uniformly

ASTR/PHYS 1060: The Universe

into dense, star-forming cores.

Simulation of the collapse of gas cloud, fragmenting, forming protoplanetary disks and low mass stars

ASTR/PHYS 1060: The Universe

UK Astrophysical る 語 Fluids Facility

Matthew Bate University of Exeter

Conservation of "Angular Momentum"

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 5

14

Angular Momentum

- L = m v r
- L is angular momentum
- *m* is mass
- v is velocity
- r is radius

Any small net spin of the collapsing cloud is amplified as it becomes smaller

ASTR/PHYS 1060: The Universe

Protoplanetary Disk

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 5

17

Observations of Disks

ASTR/PHYS 1060: The Universe

Protoplanetary Disks in the Orion Nebula Hubble Space Telescope • WFPC2

NASA, J. Bally (University of Colorado), H. Throop (SWRI), and C.R. O'Dell (Vanderbilt University) STScI-PRC01-13

Observations of Disks

HL Tauri ALMA (radio)

ASTR/PHYS 1060: The Universe

WISE (infrared)

ALMA (radio)

Computer Simulations of Protoplanetary Disks

https://www.youtube.com/watch?v=yXq1i3HlumA&feature=youtu.be

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 5

20

Likewise, the gravitational force pulling material toward the center of a protostar is exactly balanced by the pressure.

Likewise, as more material falls on the protostar, and as heat from its interior radiates away, the protostar becomes more compact. Pressure in the protostar increases.

Ch. 5: Formation of Stars/Planets

HW1 solutions are online

Are your grades in Canvas correct???

ASTR/PHYS 1060: The Universe

Midterm 1 on Sept. 28th will cover Chapters 1-5 and lecture material

> Last name: end of HW1 available up front alphabet to your right

> > Fall 2018: Chapter 5

24

Evidence of impacts are everywhere!

Earth (Meteor Crater)

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 5

Jupiter

Mimas (Saturn)

What evidence do we have that our solar system formed from an accretion disk?

ASTR/PHYS 1060: The Universe

Almost correct observation in Sci Fi

ASTR/PHYS 1060: The Universe

https://www.youtube.com/watch?v=LAlqp0_a0tE

Almost correct observation in Sci Fi

https://www.youtube.com/watch?v=LAlqp0_a0tE

ASTR/PHYS 1060: The Universe

High Budget ESA PR

https://www.youtube.com/watch?v=32vlOgN_3QQ

ASTR/PHYS 1060: The Universe

Rosetta Mission and Philae Lander

ASTR/PHYS 1060: The Universe

Mass Distribution in the Solar System

Sun 99.85%

ASTR/PHYS 1060: The Universe

Outer Planets 0.134%

Terrestrial Planets 0.001%

What is the solar system made of?

ASTR/PHYS 1060: The Universe

Iron & Rocks (Fe, Si, Al, Ca, Mg)

Water Ice (H₂O)

Methane Ice (CH₄)

Ammona Ice (NH₃)

Inner versus outer planets

ASTR/PHYS 1060: The Universe

Exoplanets

ASTR/PHYS 1060: The Universe

First planets discovered outside the solar system

Pulsar PSR B1257+12

1992 - 3 confirmed planets

ASTR/PHYS 1060: The Universe

Sun-like star: 51 Pegasi b

1995 - a "hot Jupiter"

How to find planets

• Detect them directly

Detect their influence on their star

ASTR/PHYS 1060: The Universe

Direct Imaging

- Image the planet
- Detect its atmosphere in a spectrum

Transit Method

- Measure light blocked from the star when the planet eclipses it
- Measure the star's motion due to the planet's gravity

Radial Velocity Method

Fomalhaut System

Hubble Space Telescope • STIS

ASTR/PHYS 1060: The Universe

Direct Imaging

Planet millions of times fainter Need to mask the starlight

Radial Velocity Method

Waves that reach this observer are spread out to longer, redder wavelengths (lower frequency). Waves that reach this observer are squeezed to shorter, bluer wavelengths (higher frequency).

ASTR/PHYS 1060: The Universe

Doppler Shift of Light

ASTR/PHYS 1060: The Universe

λ observed **A***emitted* C emitted

Which spectrum is moving away from us the fastest?

Ch. 5: Formation of Stars/Planets

Midterm 1 on Sept. 28th will cover Chapters 1-5 and lecture material

HW1 solutions are online

HW1 available up front

Are your grades in Canvas correct???

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 5

43

Astronomy in the News!

∎IIAT&T LTE

9:35 AM

95% 📼

MBCSports

Texans now have NFL's longest winless streak

46m ago

ars technica

Get ready for a flood of new exoplanets: TESS has already spotted two

ASTR/PHYS 1060: The Universe

Japanese satellite Hayabusa 2 visits asteroid Ryugu!

ASTR/PHYS 1060: The U

ASTR/PHYS 1060: The U

ASTR/PHYS 1060: The L

6.

N 84

ASTR/PHYS 1060: The U

ASTR/PHYS 1060: The Universe

Can't see the planet, but can see the star

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Motion of the Sun relative to its center of mass could be detectable by (more advanced than us) aliens

Fall 2018: Chapter 5

1981

Transit Method

ASTR/PHYS 1060: The Universe

Starlight is blocked by the planet, reducing the amount of light detected from the star

A quick review of orbits...

Kepler

&

ASTR/PHYS 1060: The Universe

Kepler

Kepler Mission

ASTR/PHYS 1060: The Universe

Kepler's 3 Laws

<u>1st Law:</u> Orbits are elliptical

2nd Law: equal areas in equal times

<u>3rd Law: period depends on distance</u>

(Period of Planet [in years])²

(Average Distance of Planet from Star [in AU])³

Ch. 5: Formation of Stars/Planets

Midterm 1 on Sept. 28th will cover Chapters 1-5 and lecture material

Transit Activity due @10:55am (feel free to discuss your answers with your group or turn in up front anytime beforehand)

Are your grades in Canvas correct???

ASTR/PHYS 1060: The Universe

Office Hours

- Mon 12-1pm Zane Tues 1:30-3pm me Tues 5-6pm Randall Wed 3-4pm Randall
- Thurs 11:45a-12:45pm Zane Fri 12-1pm me

me: INSCC 320

Zane/Randall: JFB 325

ASTR/PHYS 1060: The Universe

1) Draw a planet orbiting a star what orientation is required to produce planetary transits? How common do you think that orientation is?

2) What can you learn about the physical properties of the planets from transits based on the data you took (hint: there is more than one thing)?

ASTR/PHYS 1060: The Universe

3) What is the difference between the planets around Star A and Star C (be as quantitative as possible)?

ASTR/PHYS 1060: The Universe

4) What is the difference between the planets around Star C and Star D?

ASTR/PHYS 1060: The Universe

5) How can you explain the results from star B (there are a variety of reasons that we may not see a signal)?

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

6) The Earth's radius is about 100 times smaller than the sun? How sensitive would our light meter have to be to detect its transit?

How long would you have to observe to find an earth-like planet around another star?

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Kepler-11 System (6 planets)

ASTR/PHYS 1060: The Universe

Kepler Planetary Systems

https://youtu.be/_DnDeBa0KFc

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

71

Exoplanet Discoveries

As of December 14, 2017

Planetary Systems by Number of Known Planets

Planetary Systems

As of December 14, 2017

Sizes of Kepler Planet Candidates As of July 23, 2015

(2 - 6 R_a)

289 - Jupiter-size (6 - 15 R_a)

72 - Larger (15 - 25 R_a)

74

Small Planets Come in Two Sizes

What's Next: TESS

Large Magellanic Cloud

0 Alpha Mensae

Tarantula Nebula

"First Light" image taken by TESS, released last week - already found 2 new planets!

TESS will monitor the brightest stars in the sky for transits, finding planets around the stars nearest to us

Fall 2018: Chapter 5

Fall 2018: Chapter 5

What do you think about the possibility of detecting biosignatures on an Earth-like planet orbiting another star?

ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 5

- It is in orbit around the Sun.
- •It has "cleared the neighborhood" around its orbit.

Pluto

Why Pluto is not a planet

•It has sufficient mass to assume hydrostatic equilibrium (a nearly round shape).

Paper recently out about this 3rd criteria not used <u>historically</u>

Charon Fall 2018: Chapter 5

