Final Exam Review

December 14th
10:30am
JFB 101 (this room)

Pick up midterms up front
TA-led review next Wednesday at usual office hours time/location: JFB 325, 3pm, Dec. 12th

Exam Format

2hr time limit: 10:30am-12:30pm
counts 33% more toward your final grade than a midterm, so the exam will be roughly 33\% longer (2 hr should be plenty of time in other words)

Multiple Choice Questions 60-75\% of total score

Short Answer Questions

$40-25 \%$ of total score
may require calculations, but calculators not needed (or allowed)

Seasons and Moon Phases: it’s all just perspective

Kepler's 3 Laws

1st Law: Orbits are elliptical

2nd Law: equal areas in equal times

3rd Law: period depends on distance
$\left(\right.$ Period of Planet [in years]) ${ }^{2}$
(Average Distance of Planet from Star [in AU]) ${ }^{3}$

Newton's 3 Laws

1) Law of Inertia: Objects at rest stay at rest, objects in motion stay in motion (Galileo figured this one out)
2) Motion is changed by unbalanced forces acceleration = force $/$ mass
3) Forces always come in pairs and those pairs are always equal in strength but opposite in direction

Newton's Universal Law of Gravitation: $W=G \frac{m_{1} m_{2}}{r^{2}}$

Gravity is an attractive force
that acts along the line between
two objects.

More mass means more force.

> The force is proportional to the product of the two masses.

Greater separation

Electromagnetic Spectrum

$\begin{aligned} & \text { angular resolution }=206265 \text { arcseconds } \frac{\text { wavelength }}{\text { telescope diameter }} \\ & \longrightarrow \theta \propto \frac{\lambda}{D}\end{aligned}$

Any small net spin of the collapsing cloud is amplified as it becomes smaller

Conservation of Angular Momentum: $L=m v r$

Mass Distribution in the Solar System

Outer Planets
0.134\%
\section*{Sun}
99.85\%
Terrestrial Planets
0.001 \%

How to find planets

- Detect them directly

- Image the planet
- Detect its atmosphere in a spectrum

Kepler 6b

- Detect their influence on their star

Transit Method

- Measure light blocked from the star when the planet eclipses it
- Measure the star's motion due to the planet's gravity

$$
\frac{\lambda_{\text {observed }}-\lambda_{\text {emitted }}}{\lambda_{\text {emitted }}}=\frac{\mathrm{V}}{c} \text { Radial Velocity Method }
$$

(a)

Luminosity depends on
Temperature AND Size

proton-proton chain burns $\mathrm{H}->\mathrm{He}$, releasing neutrinos and positrons (gamma rays)

Triple-alpha process, burns $\mathrm{He} \rightarrow \mathrm{C}$ in Horizontal Branch phase

The remarkable agreement between observations of stars in a cluster (dots).

White Dwarf <-> electron degeneracy pressure

Different possible fates may await star 1, including recurrent eruptions of nova explosions and possibly complete disintegration in a Type la supernova.

if mass exceeds Chandrasekhar limit (1.4 $\mathrm{M}_{\text {sun }}$)
star burns
hydrogen in a

Massive stars burn up to Fe (iron) in its core, then go supernovae (Type II)

Fall 2018: Final Review

Neutron Stars

Black Holes

Fall 2018: Final Review

Hubble's law demonstrates that the universe is expanding

Distance Ladder

Parallax

Cepheid Variables

Type la SNe

Spectroscopic Parallax

Milky Way

1,000 light -years

100,000 light-years

Cosmic Microwave Background leftover radiation from the big bang

Expansion History of Space

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Density of normal matter in today's universe $\left(10^{-28} \mathrm{~kg} / \mathrm{m}^{3}\right)$

Fall 2018: Final Review

Methane tetrahedron

Life needs:

- organic molecules
- water
- energy

Dyson
Spheres

Happy Studying!

And now some final remarks on aliens and the universe

‘Oumuamua: alien comet or space probe?!?

Artist's impression of the object: ESO/M. Kornmesser

On an unbound orbit, about the speed stars move relative to each other

Size uncertain, but likely more cigar shaped spheroidal

Found to be accelerating away from the
Sun as it left the solar system
Could it be an alien probe checking us out? Using a solar sail as propulsion?

Or is it just a rock from another star system (possibly carrying microscopic life)?

Dyson Spheres

Artist's conception of a Dyson Sphere (CapnHack) https://earthsky.org/space/what-is-a-dyson-sphere

More correctly called a Stapleton Sphere, after Olaf Stapleton whose 1937 novel Star Maker inspired Freeman Dyson to propose the search for such objects

Kardeshev Type II civilization: harnesses all the power of its star

Can search for galaxies with "too much" IR light: sphere would emit waste heat no evidence of substantial structures yet found

Tabby's star (discovered with Kepler) - alien megastructures or dust? (spoiler, dust)

Kardeshev Type III+ civilization could capture stars with these spheres, out to a distance of 10 s of millions of light years away, in an attempt to forestall lack of resources due to dark energy

Contact (1997) movie still frame

ASTR/PHYS 1060: The Universe

Consider again that dot. That's here. That's home. That's us. On it everyone you love, everyone you know everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, ever hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every "superstar", every "supreme leader", every saint and sinner in the history of our species lived there - on a mote of dust suspended in a sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of blood spilled by all those generals nd emperors so that, in glory and triumph, they could ecome the momentary masters of a fraction of a dot. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishab inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds.

Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe:, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hin that help will come from elsewhere to save us from ourselves.

The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet Like it or not, for the moment the Earth is where we make our stand.

It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits th this distant image of our tiny world. To me, it anderscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we've ever known.

Hope you learned something!

And had a little fun - I did.

Thank you!

