

# Midterm 1 Review

### Midterm 1 on Sept. 28th will cover Chapters 1-5 and lecture material

Chapter 10 Reading Assignment due Monday, October 1st & Chapter 11 Reading Assignment due Friday, October 5th (in Canvas)

Are your grades in Canvas correct???

ASTR/PHYS 1060: The Universe

### **Office Hours**

Mon 12-1pm Zane Tues 1:30-3pm me Tues 5-6pm Randall Wed 3-4pm Randall Thurs 11:45a-12:45pm Zane Fri 12-1pm me me: INSCC 320 Zane/Randall: JFB 325



**Multiple Choice Questions** 60-75% of total score

ASTR/PHYS 1060: The Universe



### **Exam Format**

50-60 min time limit: 10:45-11:35/45am



**Short Answer Questions** 40-25% of total score may require calculations, but calculators not needed (or allowed)

Fall 2018: Midterm 1 Review



2

# Chapter 1: Scales and How to Think Like a Scientist

ASTR/PHYS 1060: The Universe







Moving outward through the universe at the speed of light, going around Earth is like a snap of your fingers.



The Moon is a little more than a second away.







The diameter of Neptune orbit is a night's sleep.

#### ASTR/PHYS 1060: The Universe

### Scale by light-speed













# **Scientific Method**



#### ASTR/PHYS 1060: The Universe



### **Scientific Notation**

ASTR/PHYS 1060: The Universe

- $10^6 = 1,000,000 = \text{one million}$
- $5x10^9 = 5,000,000,000 =$ five billion
- $2x10^2 \times 3x10^3 = 6x10^5 = 600,000 = six hundred thousand$
- Calculator / Computer shorthand:  $2e-7 = 2x10^{-7} = 0.0000002$ (on exams and assignments, use the correct notation, not this shorthand)



# To conclude (or really, begin):

Because light travels at a finite speed, looking far away is looking into the past

There are ~100 billion stars in our Galaxy, the Milky Way

There are ~100 billion galaxies in the visible universe

Most stars host planets (although mostly uninhabitable by our standards)

We are made of stardust

ASTR/PHYS 1060: The Universe



**10<sup>11</sup> Suns** light 10<sup>2-5</sup> yr old

Gemini Planet Imager HR 8799

**Distant galaxies** light 10<sup>9+</sup> yr old





# Chapter 2: Celestial Sphere and Phases of the Moon

ASTR/PHYS 1060: The Universe



# It's all just geometry and timing





#### ASTR/PHYS 1060: The Universe



### Important Points & Planes on the <u>Celestial Sphere</u>

Project stars and planets on a sphere surrounding the Earth

It is fictitious, but convenient for locating objects in the sky

ASTR/PHYS 1060: The Universe







### If you're 30 degrees north of the equator:



ASTR/PHYS 1060: The Universe



# Max altitude of the Sun determined by where we are on Earth and where the Earth is in its orbit



#### **ASTR/PHYS 1060: The Universe**









# Seasonal Poetry











ASTR/PHYS 1060: The Universe

The two reasons we have seasons Are both due to the Earth's tilt, When our nearest pole **Points toward Sol** Its light shines to the hilt And stays in the sky Like a too-long deployed spy At risk of committing treason!









Fall 2018: Chapter 2



14

# Astrology IS bunk!

(HINT: This will be an exam question.)



ASTR/PHYS 1060: The Universe

# Hey you, what's your sign?









ember 1 the Sun the direction of ewed from Earth.

#### **ASTR/PHYS 1060: The Universe**

### Earth's axis wobbles like a top: called Precession







### Why star rise/set times change



ASTR/PHYS 1060: The Universe

### About how many degrees does the Earth

Fall 2018: Chapter 2



17

# Moon phases are easy to figure out once you have the right mental picture

ASTR/PHYS 1060: The Universe





# The apparent size of Venus correlates with its phase



© 2007 Thomson Higher Education

#### ASTR/PHYS 1060: The Universe





### (a) Solar eclipse geometry (not to scale)





#### ASTR/PHYS 1060: The Universe

### Eclipses









ASTR/PHYS 1060: The Universe





# The reason it's two-faced is known, but how that happened is not!



#### ASTR/PHYS 1060: The Universe

The Moon's crust is thicker on the far side than the near side!

<u>Theory 1</u>) two proto-Moons formed from collision, which later "gently" coalesced

<u>Theory 2</u>) the Moon formed very close to the Earth, became tidally locked soon thereafter, and the heat from the Earth "evaporated" crust on the near side, which preferentially condensed on the cooler far side

http://www.slate.com/blogs/bad\_astronomy/2014/07/01/ the\_moon\_s\_two\_faces\_why\_are\_they\_so\_different.html







# Chapter 3: Laws of Motion and Gravity

ASTR/PHYS 1060: The Universe





https://en.wikipedia.org/wiki/Apparent\_retrograde\_motion

#### ASTR/PHYS 1060: The Universe

### Epicycles



Retrograde motion of Mars in 2005. Credit astrophotographer Tunc Tezel



https://physics.weber.edu/schroeder/ua/ BeforeCopernicus.html



### Kepler's 3 Laws

### <u>1st Law:</u> Orbits are elliptical





2nd Law: equal areas in equal times



<u>3rd Law: period depends on distance</u>

(Period of Planet [in years])<sup>2</sup>

(Average Distance of Planet from Star [in AU])<sup>3</sup>









### Newton's 3 Laws

- 1) Law of Inertia: Objects at rest stay at rest, objects in motion stay in motion (Galileo figured this one out)
- 2) Motion is changed by unbalanced forces acceleration = force / mass
- 3) Forces always come in pairs and those pairs are always equal in strength but opposite in direction





![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_27_Figure_1.jpeg)

### **Gravity and Orbits**

(c)

If fired fast enough, Earth's surface curves out from under the cannonball as it falls.

![](_page_27_Picture_6.jpeg)

![](_page_27_Picture_8.jpeg)

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

# Not zero gravity. All objects are in free fall.

Like Newton's cannonball, an

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_4.jpeg)

#### ASTR/PHYS 1060: The Universe

Fall 2018: Chapter 3

![](_page_28_Picture_7.jpeg)

### **Escape Velocity**

![](_page_29_Figure_1.jpeg)

### For Earth v<sub>esc</sub> ~ 25,000 miles/hour

ASTR/PHYS 1060: The Universe

![](_page_29_Picture_5.jpeg)

# Chapter 4: Light and Telescopes

ASTR/PHYS 1060: The Universe

![](_page_30_Picture_3.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_4.jpeg)

# Light is "quantized" Its energy is proportional to frequency

![](_page_32_Picture_1.jpeg)

ASTR/PHYS 1060: The Universe

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_32_Picture_6.jpeg)

# **Electromagnetic Spectrum**

![](_page_33_Figure_1.jpeg)

#### ASTR/PHYS 1060: The Universe

![](_page_33_Picture_4.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

ASTR/PHYS 1060: The Universe

#### Wavelength

![](_page_34_Picture_5.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_2.jpeg)

### CAN'T SEE SPACE VAMPIRES

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_6.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_36_Picture_6.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Picture_4.jpeg)

![](_page_38_Figure_1.jpeg)

# Andromeda Galaxy - Our Nearest Neighbor

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

# Chapter 5: Star and Planet Formation and Exoplanets

ASTR/PHYS 1060: The Universe

![](_page_39_Picture_3.jpeg)

### Life Cycle of **Gas and Stars**

![](_page_40_Picture_1.jpeg)

ASTR/PHYS 1060: The Universe

![](_page_40_Picture_3.jpeg)

#### Fall 2018: Chapter 5

![](_page_40_Picture_5.jpeg)

41

Parcels of gas within a molecular cloud feel the gravitational attraction of all other parts of the molecular cloud...

![](_page_41_Picture_1.jpeg)

#### ASTR/PHYS 1060: The Universe

![](_page_41_Picture_3.jpeg)

![](_page_41_Picture_5.jpeg)

![](_page_41_Picture_6.jpeg)

### Any small net spin of the collapsing cloud is amplified as it becomes smaller

![](_page_42_Picture_1.jpeg)

### Conservation of Angular Momentum: L = m v r

#### ASTR/PHYS 1060: The Universe

![](_page_42_Picture_5.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_43_Picture_2.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_44_Picture_4.jpeg)

![](_page_44_Picture_5.jpeg)

![](_page_45_Figure_1.jpeg)

### Human body elemental abundance

| Element  | Proportion (by mass) |  |
|----------|----------------------|--|
| Oxygen   | 65%                  |  |
| Carbon   | 18%                  |  |
| Hydrogen | 10%                  |  |
| Nitrogen | 3%                   |  |

![](_page_45_Picture_6.jpeg)

![](_page_45_Picture_7.jpeg)

### Mass Distribution in the Solar System

# Sun 99.85%

ASTR/PHYS 1060: The Universe

### Outer Planets 0.134%

Terrestrial Planets 0.001%

Fall 2018: Chapter 5

![](_page_46_Picture_6.jpeg)

47

### Inner versus outer planets

![](_page_47_Picture_1.jpeg)

ASTR/PHYS 1060: The Universe

![](_page_47_Picture_4.jpeg)

### How to find planets

### • Detect them directly

### Detect their influence on their star

ASTR/PHYS 1060: The Universe

### **Direct Imaging**

- Image the planet
- Detect its atmosphere in a spectrum

### **Transit Method**

- Measure light blocked from the star when the planet eclipses it
- Measure the star's motion due to the planet's gravity

**Radial Velocity Method** 

![](_page_48_Picture_13.jpeg)

### **Doppler Shift of Light N**observed - $\Lambda_{emitted}$ <sup>L</sup>emitted blueshift Waves that reach this Waves that reach this observer are squeezed to observer are spread out to shorter, bluer wavelengths longer, redder wavelengths (lower frequency). (higher frequency). Moving source of light This observer sees no Doppler shift blueshift

Spectroscopic Binary

A spectroscopic binary is where there is evidence of orbital motion in the spectral features due to the Doppler effect

![](_page_49_Figure_3.jpeg)

#### ASTR/PHYS 1060: The Universe

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_7.jpeg)

### **Transit Method**

![](_page_50_Figure_2.jpeg)

#### **ASTR/PHYS 1060: The Universe**

Starlight is blocked by the planet, reducing the amount of light detected from the star

![](_page_50_Picture_6.jpeg)

### Exoplanet Discoveries

![](_page_51_Figure_1.jpeg)

As of December 14, 2017

![](_page_51_Picture_3.jpeg)

# Happy Studying!

![](_page_52_Picture_4.jpeg)