Name:

ASTR/PHYS 1060, Dan Wik, Started as in-class activity on Sept. 26th. Due Oct. 3rd, start of class; turn in hard copy with answers to 6)-15) attached on a separate page.

| 20 Brightest Stars Visible From Earth |                    |          |       |          |  |  |  |
|---------------------------------------|--------------------|----------|-------|----------|--|--|--|
| Star                                  | Luminosity         | Spectral | Temp. | Dist.    |  |  |  |
|                                       | $[{ m L}_{\odot}]$ | Type     | [°K]  | [ly]     |  |  |  |
| Sun                                   | 1                  | G2       | 5800  | 0.000016 |  |  |  |
| Sirius A                              | 22                 | A1       | 9600  | 8.6      |  |  |  |
| Canopus                               | 15000              | F0       | 7350  | 310      |  |  |  |
| $\alpha$ Centauri A                   | 1.5                | G2       | 5800  | 4.3      |  |  |  |
| Arcturus                              | 110                | K2       | 4960  | 36       |  |  |  |
| Vega                                  | 49                 | A0       | 9600  | 25       |  |  |  |
| Rigel                                 | 42000              | В8       | 12300 | 910      |  |  |  |
| Procyon                               | 7                  | F5       | 6700  | 11.4     |  |  |  |
| Betelgeuse                            | 9000               | M2       | 3600  | 640      |  |  |  |
| Achernar                              | 1100               | B5       | 15200 | 85       |  |  |  |
| $\beta$ Cen                           | 12000              | B1       | 23000 | 525      |  |  |  |
| Capella A                             | 90                 | G8       | 5400  | 42       |  |  |  |
| Altair                                | 11                 | A7       | 7900  | 17       |  |  |  |
| Aldebaran                             | 150                | K5       | 4400  | 65       |  |  |  |
| Capella B                             | 70                 | G0       | 6100  | 42       |  |  |  |
| Spica A                               | 2200               | B1       | 23000 | 262      |  |  |  |
| Antares A                             | 7500               | M1       | 3700  | 600      |  |  |  |
| Pollux                                | 31                 | K0       | 5200  | 34       |  |  |  |
| Fomalhaut                             | 17                 | A3       | 8800  | 25       |  |  |  |
| Deneb                                 | 258000(!)          | A2       | 9040  | 3200     |  |  |  |

| 20 Nearest Stars to Earth |                    |          |       |          |  |  |
|---------------------------|--------------------|----------|-------|----------|--|--|
| Star                      | Luminosity         | Spectral | Temp. | Dist.    |  |  |
|                           | $[{ m L}_{\odot}]$ | Type     | [°K]  | [ly]     |  |  |
| Sun                       | 1                  | G2       | 5800  | 0.000016 |  |  |
| Proxima Centauri          | 0.00005            | M5       | 3200  | 4.2      |  |  |
| α Centauri A              | 1.5                | G2       | 5800  | 4.3      |  |  |
| α Centauri B              | 0.4                | K1       | 5100  | 4.3      |  |  |
| Barnard's Star            | 0.0004             | M3       | 3500  | 6.0      |  |  |
| Wolf 359                  | 0.00002            | M6       | 3100  | 7.7      |  |  |
| BD +36 2147               | 0.005              | M2       | 3600  | 8.2      |  |  |
| UV Cet A                  | 0.00005            | M5       | 3200  | 8.4      |  |  |
| UV Cet B                  | 0.00003            | M6       | 3100  | 8.4      |  |  |
| Sirius A                  | 22                 | A1       | 9600  | 8.6      |  |  |
| Sirius B                  | 0.002              | B1       | 25000 | 8.6      |  |  |
| Ross 154                  | 0.0004             | M3       | 3500  | 9.4      |  |  |
| Ross 247                  | 0.0001             | M5       | 3200  | 10.4     |  |  |
| $\epsilon$ Eri            | 0.3                | K2       | 5000  | 10.8     |  |  |
| Ross 128                  | 0.0003             | M4       | 3400  | 10.9     |  |  |
| 61 Cyg A                  | 0.08               | K4       | 4600  | 11.1     |  |  |
| 61 Cyg B                  | 0.04               | K5       | 4400  | 11.1     |  |  |
| $\epsilon$ Ind            | 0.1                | К3       | 4800  | 11.2     |  |  |
| BD +43 44 A               | 0.006              | M1       | 3700  | 11.2     |  |  |
| BD +43 44 B               | 0.0004             | M4       | 3400  | 11.2     |  |  |



- 1) The spectral type of a star measures its (fill-in-the-blank)
- 2) Plot the sun with a  $\odot$  symbol on the H-R diagram. Then plot the rest of the 20 nearest stars with an "X" and the brightest stars with a  $\star$ .
- 3) Use the stellar temperatures from the table to create a temperature scale for the x-axis and write it at the top.
- 4) Label the ends of the appropriate axes with the words "Red", "Blue", "Bright" & "Dim".
- 5) Identify the main sequence of stars, and draw a circle around it.

Please type up or neatly write your answers to the questions below on a separate sheet of paper!

## **Typical Stars:**

- 6) Compare the nearest stars to the brightest stars. Describe how they differ in terms of their positions in the H-R diagrams.
- 7) Which set of stars (nearest or brightest) do you think is most representative of stars in the Milky Way? Why?
- 8) There are 100 billion stars in the Milky Way. Estimate how many of these stars are fainter and cooler than the sun.
- 9) The stars that end with an "A" or "B" are members of binary or larger multiple systems. Put a star by each binary star in the tables. What fraction of stars are in a binary system?

## Stellar Properties (Size, Mass, Spectra):

10) For stars with the same radius as the sun, we can rewrite the Stefan-Boltzmann law to determine how their luminosity varies with temperature:

$$\frac{L}{L_{sun}} = \left(\frac{T}{5800 \text{ K}}\right)^4$$

where L is the luminosity of the star and T is its temperature in Kelvin.

Use this equation to figure out the luminosity of a sun-sized B1 star (T=23000 K) and M6 star (T=3100 K).

Sun-Sized B1 star luminosity:

Sun-Sized M6 star luminosity:

- 11) Plot the sun-sized B1 star and M6 star on your H-R diagram with small dots and draw a line between these two points and the Sun. Then figure out which side of this line larger and smaller stars will fall and label this on the plot.
- 12) Are the brightest main sequence stars larger or smaller than the Sun? How about the faintest main sequence stars?
- 13) The position of stars along the main sequence is determined by their mass. Where do the highest and lowest mass main sequence stars fall on the H-R diagram?
- 14) The star Betelgeuse is red but bright. How can you explain its high luminosity despite its low temperature?
- 15) The sun's spectrum peaks at 500 nm. Use Wien's law  $(\lambda_{max} = \frac{2900[\mu \text{m K}]}{T[K]})$  to calculate the peak wavelengths of both Rigel and Proxima Centauri. Also figure out whether these wavelengths are at visible, ultraviolet or infrared wavelengths.