

Chapter 4: Light

ASTR/PHYS 1060: The Universe

©NCSSM 2002

https://www.youtube.com/watch?v=XggxeuFDaDU

Light is an "electromagnetic wave"

ASTR/PHYS 1060: The Universe

©NCSSM 2002

ASTR/PHYS 1060: The Universe

Objects emit light waves...

 \mathbf{a}

2 ...that travel outward through space at the speed of light.

Speed of light

Speed of Light: can you explain how we can measure it via this method?

ASTR/PHYS 1060: The Universe

A light-year is a unit of...

A) Energy **B)** Time C) Distance

ASTR/PHYS 1060: The Universe

D) Time and Distance

A light-year is like a parsec, but 3.26 times shorter

It's the ship that made the Kessel run in less than 1 parsecs.

ASTR/PHYS 1060: The Universe

Fall 2019: Chapter 4

spice

Chapter 4: Light

- Ch. 5 Reading Quiz due this Thursday
- If you will miss class, email <u>astr1060absence@gmail.com</u> BEFORE the start of that class
 - Midterm 1 Exam on Sept. 19th (1 week from Thursday)

ASTR/PHYS 1060: The Universe

Light is "quantized" Its energy is proportional to frequency

ASTR/PHYS 1060: The Universe

Electromagnetic Spectrum

ASTR/PHYS 1060: The Universe

Fall 2019: Chapter 4

11

What type of emission do we see only from the most energetic events?

ASTR/PHYS 1060: The Universe

- A) Visible Light
- **B)** Radio Waves
- C) Ultraviolet Light
- D) Gamma Rays

Fall 2019: Chapter 4

12

What is a spectrum?

Which object would look bluer? Which object would look brighter?

ASTR/PHYS 1060: The Universe

14

Emission and Absorption Lines

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Wavelength

Our eyes are telescopes!

amount of refraction depends on the wavelength of light cannot focus red and blue light at the same time!

ASTR/PHYS 1060: The Universe

Astronomical Sources are "infinitely" far away

ASTR/PHYS 1060: The Universe

Use reflecting telescopes due to less chromatic aberration and easier to build large ones

ASTR/PHYS 1060: The Universe

CAN'T SEE SPACE VAMPIRES

Why do astronomers keep making telescopes bigger?

A) Increase the field of view of a single observation

- C) Collect more light
- **D)** Astronomers need to compensate for something

ASTR/PHYS 1060: The Universe

B) Resolve finer details (better image resolution)

What is "angular resolution"?

- detector
- mirrors
- C) The angles light must be bent by mirrors

ASTR/PHYS 1060: The Universe

A) The angular size of a pixel of a CCD or any

B) The smallest resolving power of a telescope's

D) A solution to a tricky problem in optical design

Making Images

Charged Coupled Devices (CCDs)

"True" Color

ASTR/PHYS 1060: The Universe

Gaseous Pillars · M16

PRC95-44a · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

Fall 2019: Chapter 4

HST · WFPC2

False color images can be made using light at any wavelength, from radio to gamma ray

If you were designing a telescope to survey the entire sky to study the brightest stars in several colors over the course of a year, what features would you want it to have?

- large/small FOV? 1 big telescope vs. several smaller telescopes? a refracting or reflecting design?
 - **Discuss in small groups!**

ASTR/PHYS 1060: The Universe

large/small mirrors (collecting area)?

29

Brief Tour of the Universe at Different Wavelengths

high energy

ASTR/PHYS 1060: The Universe

low energy

Radio (broad band)

Jupiter

Captured charged particles from the Sun

ASTR/PHYS 1060: The Universe

Centaurus A Galaxy Jets accelerated by a supermassive black hole

Radio (narrow band) **Spiral Galaxy** Hydrogen gas through emission line at 21 cm Visible light (stars - images at the same scale)

ASTR/PHYS 1060: The Universe

Visible Light

ASTR/PHYS 1060: The Universe

Infrared - Dust Clouds

Infrared Light (1-2 µm)

Ultraviolet - Massive Stars

X-ray (Chandra)

ASTR/PHYS 1060: The Universe

X-ray - Dead Stars

Infrared (Hubble)

Crab Nebula

supernova explosion left a pulsar at the center that energizes surrounding gas

Radio/X-ray - Million Degree Gas in Galaxy Clusters

ASTR/PHYS 1060: The Universe

Red = RadioYellow = Visible Blue = X-ray

Andromeda Galaxy - Our Nearest Neighbor

ASTR/PHYS 1

