

Week 1: Night Sky & Coords

Please complete the Student Info and Pre-course Asssessment, if you haven't yet

Name our Llama!

HW1 due in 1 week

Read indicated sections of Ch. 2 & 3 by Tuesday

ASTR/PHYS 2500: Foundations Astronomy

ASTR/PHYS 2500: **Foundations Astronomy**

The Night Sky & Astronomical Coordinates

ASTR/PHYS 2500: Foundations Astronomy

Star trails over the Gemini South telescope

ASTR/PHYS 2500: Foundations Astronomy

Orion

Constellation versus Asterism

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 01

ASTR/PHYS 2500: Foundations Astronomy

Ursa Major & Minor (Big and Little Bears)

Big & Little Dippers

Polaris (North Star)

These star patterns are of little use to modern astronomers

ASTR/PHYS 2500: Foundations Astronomy

ASTR/PHYS 2500: Foundations Astronomy

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 01

But, constellations act like political boundaries on a map

Useful for naming objects:

Brightest stars in a constellation are ordered from brightest to faintest with Greek letters (e.g., brightest star in Centaurus is called alpha Centauri)

Similar convention in radio and X-ray, e.g., the radio supernova remnant Casseopia (Cas) A, the black hole systems Cygnus X-1 and X-3, the supermassive black hole at the center of the Milky Way, Sagittarius (Sgr) A*

Nearby galaxies and galaxy groups and clusters also take constellation names (Andromeda Galaxy, Coma Cluster, Virgo Cluster)

Constellations aren't that useful in practice though, because the sky is constantly "moving"

VSauce: How the Earth Moves

https://www.youtube.com/watch?v=IJhgZBn-LHg

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 01

10

Everything moves and is a tad cockeyed

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 01

11

You wake up outside, no idea how long you were unconscious for.

You look to the horizon and see this Moon. <u>Is it waxing or waning?</u> What time is it (roughly)? What direction are you looking? What time will the Moon rise a week from now?

ASTR/PHYS 2500: Foundations Astronomy

MOON PHASES!!!!

Coordinates on the Sky

ASTR/PHYS 2500: Foundations Astronomy

Coordinates on the Sky

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 01

14

Coordinates on the Sky

ASTR/PHYS 2500: Foundations Astronomy

lines of right. ascension

Fall 2020: Week 01

0

celestial equator

spring equinox

https://www.youtube.com/watch?v=1Toya19H12w

ASTR/PHYS 2500: Foundations Astronomy

If the north star is directly above our illustrious llama (i.e., at their zenith), where are they on the Earth?

ASTR/PHYS 2500: Foundations Astronomy

As Earth rotates, the stars appear to move in a counterclockwise direction around the **NCP**.

North Pole!

a counterclockwise direction around the NCP.

ASTR/PHYS 2500: Foundations Astronomy

half of the sky.

If you're 30 degrees north of the equator:

ASTR/PHYS 2500: Foundations Astronomy

At the Equator, where you can see the entire sky:

ASTR/PHYS 2500: Foundations Astronomy

Southern Hemisphere, same as in the north but relative to the South Celestial Pole

ASTR/PHYS 2500: Foundations Astronomy

Max altitude of the Sun determined by where we are on Earth and where the Earth is in its orbit

ASTR/PHYS 2500: Foundations Astronomy

http://www.youtube.com/watch?v=Xm_Cn8-DCNc

ASTR/PHYS 2500: Foundations Astronomy

Right Ascension & Declination

ASTR/PHYS 2500: Foundations Astronomy

Angular Sizes / Distances on the Celestial Sphere

If the Sun has an Hour Angle of +3^h, what time of year will the Sun set in 3 hours no matter your latitude on the Earth?

If the Sun has a declination of +15°, where on the Earth is the Sun on the horizon no matter its Hour Angle?

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 01

26

The Ecliptic: Sun's path on the Celestial Sphere

ASTR/PHYS 2500: Foundations Astronomy

Figure 1

ASTR/PHYS 2500: Foundations Astronomy

The Ecliptic

Astrology IS bunk!

ASTR/PHYS 2500: Foundations Astronomy

Hey you, what's your sign?

ASTR/PHYS 2500: Foundations Astronomy

Earth's axis wobbles like a

ember 1 the Sun h the direction of ewed from Earth.

ASTR/PHYS 2500: Foundations Astronomy

Earth's axis wobbles like a top: called Precession

Because of precession, the RA & Dec of a star are always changing!

To keep sane, astronomers use coordinates from a particular time, referred to as the Epoch; at present, we use Epoch J2000, the RA/ Dec objects had at midnight on January 1st, 2000.

To actually locate a star or object when observing, the coordinates must be "precessed".

This "precession of the equinoxes" has a rate of ~50" per year (modest optical telescopes tend to have angular resolutions of ~1" and fields of view of a few arcminutes across, so this rate is quite significant!

ASTR/PHYS 2500: Foundations Astronomy

Imagine that a team of highly advanced -- but extremely mischievous aliens -- has changed the tilt of Earth's rotation axis, relative to its orbital plane, from 23.5° to 0°.

> Which of the following features of the celestial sphere would be altered? How? A. local altitude of the North Celestial Pole B. the constellations along the ecliptic C. length of the year D. altitude of the Sun at noon on June 21st

Why star rise/set times change

ASTR/PHYS 2500: Foundations Astronomy

About how many degrees does the Earth

Calendars aren't trivial, because an orbit around the Sun takes 365.2422 days

How to identify a leap year

ASTR/PHYS 2500: Foundations Astronomy

Julian calendar was used for over 1000 years (leap day every 4 years). Every 400 years, the calendar is offset from the seasons by 3 more days.

It is a leap year

Gregorian Calendar (what we use today)

Fall 2020: Week 01

35

Constellations aren't that useful in practice though, because the sky is constantly "moving"

VSauce: How the Earth Moves

https://www.youtube.com/watch?v=IJhgZBn-LHg

ASTR/PHYS 2500: Foundations Astronomy

Why isn't there a solar eclipse every month?

Why do the Sun and Moon appear to be the same size on the sky?

ASTR/PHYS 2500: Foundations Astronomy

What causes precession (i.e., how is Earth's angular momentum able to change)?

What causes seasons? What effects result from this cause that leads to colder/hotter temperatures?

ASTR/PHYS 2500: Foundations Astronomy

