ASTR/PHYS 2500:

Foundations Astronomy

Week 1: Night Sky \& Coords

Please complete the Student Info and Pre-course Asssessment, if you haven't yet

Name our Llama!
HW1 due in 1 week
Read indicated sections of Ch. 2 \& 3 by Tuesday

The Night Sky \& Astronomical
 Coordinates

Star trails over the Gemini South telescope

Constellation versus Asterism

Ursa Major \& Minor (Big and Little Bears)

Big \& Little Dippers

Polaris
(North Star)

These star patterns are of little use to modern astronomers

But, constellations act like political boundaries on a map

ASTR/PHYS 2500: Foundations Astronomy

But, constellations act like political boundaries on a map

Useful for naming objects:
Brightest stars in a constellation are ordered from brightest to faintest with Greek letters (e.g., brightest star in Centaurus is called alpha Centauri)

Similar convention in radio and X-ray, e.g., the radio supernova remnant Casseopia (Cas) A, the black hole systems Cygnus $\mathrm{X}-1$ and $\mathrm{X}-3$, the supermassive black hole at the center of the Milky Way, Sagittarius (Sgr) A*

Nearby galaxies and galaxy groups and clusters also take constellation names (Andromeda Galaxy, Coma Cluster, Virgo Cluster)

Constellations aren't that useful in practice though, because the sky is constantly "moving"

VSauce: How the Earth Moves

https://www.youtube.com/watch?v=IJhgZBn-LHg

Everything moves and is a tad cockeyed

MOON PHASES!!!!

You wake up outside, no idea how long you were unconscious for.
You look to the horizon and see this Moon. Is it waxing or waning? What time is it (roughly)? What direction are you looking? What time will the Moon rise a week from now?

Coordinates on the Sky

Coordinates on the Sky

Coordinates on the Sky

The Celestial Sphere

If the north star is directly above our illustrious Ilama (i.e., at their zenith), where are they on the Earth?

As Earth rotates, the stars appear to move in a counterclockwise direction around the NCP.

North Pole!

If you're 30 degrees north of the equator:

At the Equator, where you can see the entire sky:

Equator

Southern Hemisphere, same as in the north but relative to the South Celestial Pole

Max altitude of the Sun determined by where we are on Earth and where the Earth is in its orbit

Motion of Earth around the Sun

http://www.youtube.com/watch?v=Xm Cn8-DCNc

Right Ascension \& Declination

Angular Sizes / Distances on the Celestial Sphere

Right Ascension

- tells time, marking when stars cross an Hour Angle of 0^{h}
- can be quoted either in degrees or hours/minutes/seconds where $24^{\mathrm{h}}=360^{\circ}$
- differences of RA DO NOT correspond to angular differences except when Dec $=0^{\circ}$

If the Sun has an Hour Angle of $+3^{\text {h }}$, what time of year will the Sun set in 3 hours no matter your latitude on the Earth?

If the Sun has a declination of $+15^{\circ}$, where on the Earth is the Sun on the horizon no matter its Hour Angle?

The Ecliptic: Sun's path on the Celestial Sphere

The apparent path that the Sun
follows against the background
of the stars is called the ecliptic.

The Ecliptic

Figure 2
Figure 1

Hey you, what's your sign?

Astrology is bunk!

 \title{

Earth's axis wobbles like a
 \title{ \section*{Earth's axis wobbles like a top: called Precession}

 top: called Precession}}

Earth's axis wobbles like a top: called Precession

Because of precession, the RA \& Dec of a star are always changing!
To keep sane, astronomers use coordinates from a particular time, referred to as the Epoch; at present, we use Epoch J2000, the RA/ Dec objects had at midnight on January 1st, 2000.

To actually locate a star or object when observing, the coordinates must be "precessed".

This "precession of the equinoxes" has a rate of ~ 50 " per year (modest optical telescopes tend to have angular resolutions of ~ 1 " and fields of view of a few arcminutes across, so this rate is quite significant!

Imagine that a team of highly advanced -- but extremely mischievous aliens -- has changed the tilt of Earth's rotation axis, relative to its orbital plane, from 23.5° to 0°.

Which of the following features of the celestial sphere would be altered? How?
A. local altitude of the North Celestial Pole
B. the constellations along the ecliptic
C. length of the year
D. altitude of the Sun at noon on June 21st

Why star rise/set times change

Calendars aren't trivial, because an orbit around the Sun takes 365.2422 days

How to identify a leap year

Julian calendar was used for over 1000 years (leap day every 4 years).
Every 400 years, the calendar is offset from the seasons by 3 more days.

Gregorian Calendar

 (what we use today)
Constellations aren't that useful in practice though, because the sky is constantly "moving"

VSauce: How the Earth Moves

https://www.youtube.com/watch?v=IJhgZBn-LHg

Why isn't there a solar eclipse every month?

Why do the Sun and Moon appear to be the same size on the sky?

What causes precession (i.e., how is Earth's angular momentum able to change)?

What causes seasons?
What effects result from this cause that leads to colder/hotter temperatures?

