ASTR/PHYS 3070:

Foundations Astronomy

Week 1 Thursday

Today's Agenda

- Naked Eye Night Sky
- Coordinate Systems
- Group Work: Navigating the Sky
- Changes in the Sky

Announcements / Reminders

- Read Chapters 2.4-2.6 \& 3 by next week
- Scanned PDF available on website
- Inclusive Access eBook now accessible
- HW 1 due September 3rd at 11:59pm via Canvas upload

The Night Sky \& Astronomical
 Coordinates

Star trails over the Gemini South telescope

Constellation versus Asterism

Ursa Major \& Minor (Big and Little Bears)

Big \& Little Dippers

Polaris (North Star)

These star patterns are of little use to modern astronomers

But, constellations act tike political boundaries on a map

ASTR/PHYS 3070: Foundations Astronomy

But, constellations act like political boundaries on a map

Useful for naming objects:
Brightest stars in a constellation are ordered from brightest to faintest with Greek letters (e.g., brightest star in Centaurus is called alpha Centauri)

Similar convention in radio and X-ray, e.g., the radio supernova remnant Casseopia (Cas) A, the black hole systems Cygnus $\mathrm{X}-1$ and $\mathrm{X}-3$, the supermassive black hole at the center of the Milky Way, Sagittarius (Sgr) A*

Nearby galaxies and galaxy groups and clusters also take constellation names (Andromeda Galaxy, Coma Cluster, Virgo Cluster)

Coodinate Systems

Coordinates on the Sky

Coordinates on the Sky

If the north star is directly above our illustrious Ilama (i.e., at their zenith), where are they on the Earth?

As Earth rotates, the stars appear to move in a counterclockwise direction around the NCP.

North Pole!

If you're 30 degrees north of the equator:

At the Equator, where you can see the entire sky:

Equator

Southern Hemisphere, same as in the north but relative to the South Celestial Pole

Max altitude of the Sun determined by where we are on Earth and where the Earth is in its orbit

Motion of Earth around the Sun

http://www.youtube.com/watch?v=Xm Cn8-DCNc

Coordinates on the Sky

Right Ascension \& Declination

Angular Sizes / Distances on the Celestial Sphere

Right Ascension

- tells time, marking when stars cross an Hour Angle of 0^{h}
- can be quoted either in degrees or hours/minutes/seconds where $24^{\mathrm{h}}=360^{\circ}$
- differences of RA DO NOT correspond to angular differences except when Dec $=0^{\circ}$

Celestial Sphere view from the inside

Group Discussion

Imagine you find yourself adrift in the ocean.
You estimate the North Star to have an altitude of approximately 60 degrees.

1. What is the angle between the North Star and your Zenith?
2. What is your latitude on the Earth?
3. Incredibly, a supernova bright enough to be visible during the day exploded and just skims your horizon at its lowest point in the sky. What is its declination?
4. What do you need to know/have with you to figure out your longitude on the Earth?

> Draw a picture!

Changes in the Sky

Why star rise/set times change

Calendars aren't trivial, because an orbit around the Sun takes 365.2422 days

How to identify a leap year

Julian calendar was used for over 1000 years (leap day every 4 years).
Every 400 years, the calendar is offset from the seasons by 3 more days.

Gregorian Calendar

 (what we use today)
The Ecliptic: Sun's path on the Celestial Sphere

The apparent path that the Sun
follows against the background
of the stars is called the ecliptic

The Ecliptic

Figure 2
Figure 1

Hey you, what's your sign?

Astrology is bunk!

 \title{

Earth's axis wobbles like a
 \title{ \section*{Earth's axis wobbles like a top: called Precession}

 top: called Precession}}

Earth's axis wobbles like a top: called Precession

ASTR/PHYS 3070: Foundations Astronomy

Because of precession, the RA \& Dec of a star are always changing!
To keep sane, astronomers use coordinates from a particular time, referred to as the Epoch; at present, we use Epoch J2000, the RA/ Dec objects had at midnight on January 1st, 2000.

To actually locate a star or object when observing, the coordinates must be "precessed".

This "precession of the equinoxes" has a rate of ~ 50 " per year (modest optical telescopes tend to have angular resolutions of ~ 1 " and fields of view of a few arcminutes across, so this rate is quite significant!

What causes precession (i.e., how is Earth's angular momentum able to change)?

What causes seasons?
What effects result from this cause that leads to colder/hotter temperatures?

Everything moves and is a tad cockeyed

MOON PHASES!!!!

You wake up outside, no idea how long you were unconscious for.
You look to the horizon and see this Moon. Is it waxing or waning? What time is it (roughly)? What direction are you looking? What time will the Moon rise a week from now?

