

/ V = O (radions) [s-all rayle approx F = O (arcsec) 206,265 [arcsec/rad] plate scale $s = \frac{\Phi}{r} = \frac{206265}{F}$ > larger focal legths F have smallers > angular separation O translates to smaller physical size on detector r Actual size of point (as small) source depends on telescope's anywher resolution Din = 1.22 n - aveleyth Din = 1.22 D -> telescope dia Is determined by differentia Cross-section of unresolved source J "point spread function" or PSF Half-poner dian A max HPD > diameter w/i which 2

$$\begin{split} & \int_{V} = \frac{1}{\sigma_{F}} = \frac{1}{\sqrt{1 + chrs}} \frac{$$

B60 regimen used to actimate by L

$$S = T - B$$
For independent processes, can add
uncertainty's in quadrature

$$\sigma_{cnS}^{2} = \sigma_{s}^{2} + \sigma_{a}^{2}$$
Mice σ_{cond} , $= \int \sigma_{s}^{-1} + \sigma_{a}^{2}$
 $M_{isc} = \int \sigma_{s}^{-2} + \sigma_{a}^{2}$
 $M_{isc} = \int \sigma_{s}^{-2} + \sigma_{a}^{2}$
 $S = \frac{T - B}{\int \sigma_{s}^{-1} + \sigma_{a}^{2}}$
 $S = \frac{T - B}{\int \sigma_{s}^{-1} + \sigma_{a}^{2}}$
 $S = \frac{T - B}{\int \sigma_{s}^{-1} + \sigma_{a}^{2}}$
 $S = \frac{T - B}{\int T^{-1}}$
consider the rates M_{T}, M_{P}
 $\frac{T}{t_{exp}} = \frac{B}{t_{exp}}$
 $S = \frac{(m_{T} - M_{B}) t_{exp}}{\int m_{T} t_{exp}} \leq t_{exp}$

if pre >> prs, then in the "byd-dain
regime
Let's say you want to detect stars
where a minimum flux is what doe
This men?
> have a min. S/N, say 3
S/N

$$S \cong \frac{Ms}{M^2} t^{V_2} = const$$

 $M \cong \frac{K^2}{M^2} t^{V_2} = const$
 $M \cong \nabla F_S \propto t^{-1/2}$
Lager you observe, can see fainter
stars, but to go 2x deeper in flue
weed to observe the layer

X For this reason, we take telescope