

ASTRYPHYS 3070: Foundations Astronomy

Week 13 Tuesday

Today's Agenda

- Project Examples
- Star formation
- Evolution of a low mass star
- Evolution of a high mass star
- Stellar Remnants intro

Announcements / Reminders

- Read Chapters 17 & 18
- HW 9 due Friday 1min before midnight
- HEAP talk at 4pm on Thursday
 - Dark Sector Visible Signals in Neutron Star Mergers
- Colloquium at 2pm on Friday
 - Cosmic Rays at Heliospheric Extremes: Recent Measurements by Voyager and Parker Solar Probe

"Star" —> undergoing fusion

Formed from clouds of gas that collapse due to self-gravity

Pressure in the gas can keep the cloud from collapsing

—> HSE

BUT, once a cloud of a given density and temperature reaches a critical size, it will collapse

$$t_{\rm ff} < t_{\rm press} = \frac{r_0}{c_s}$$

$$t_{\rm ff} = \left(\frac{3\pi}{32G\rho_0}\right)^{1/2}$$

$$c_s = \left(\frac{\gamma kT}{\mu m_p}\right)^{1/2}$$

$$r_{\rm J} \approx 2000 \text{ AU} \left(\frac{T}{10 \text{ K}}\right)^{1/2} \left(\frac{\rho_0}{3 \times 10^{-15} \text{ kg m}^{-3}}\right)^{-1/2}$$

"Star" —> undergoing fusion

Formed from clouds of gas that collapse due to self-gravity

Pressure in the gas can keep the cloud from collapsing

-> HSE

BUT, once a cloud of a given density and temperature reaches a critical size, it will collapse

-> Jeans length

If density and size is determined, also have a critical mass —> <u>Jeans mass</u>

As a cloud collapses, density and temperature will change, causing the Jeans length and mass to shrink so the cloud fragments —> <u>fragmentation</u>

1 cloud produces many stars: a star cluster

Protostars form from an "accretion disk"

Angular momentum dissipated in the disk

>99.9% of mass in the protostar, but planets with much less mass typically carry more angular momentum (which originates from the cloud)

ASTR/PHYS 3070: Foundations Astronomy

Fall 2021: Week 13a

Fall 2021: Week 13a

Again, this time with feeling!

Size changes along with temperature

red giant

Globular Cluster Color-Magnitude Diagram

High Mass Stars = High Core Temps = CNO

ASTR/PHYS 3070: Foundations Astronomy

Fall 2021: Week 13a

A Cepheid's luminosity can be inferred

Empirically discovered by Henrietta Leavitt in 1912

$$\overline{M}_V = -2.76 \log(P/10 \text{ days}) - 4.16$$

$$\log(d/10 \text{ pc}) = 0.2(\overline{m}_V - \overline{M}_V)$$

Stellar Remnants: White Dwarfs, Neutron Stars, & Black Holes

Degeneracy Pressure

As stellar evolution proceeds, cores are supported by "degeneracy pressure" when there is no fusion to provide the necessary pressure to support the core against gravitational collapse.

-> acts as a "pressure floor"

Source of this pressure come from the rules of QM — Pauli exclusion & uncertainty principles

$$\Delta x \Delta p \geq \hbar$$

Material getting maximally compressed, so electron momentum/velocity driven by that compression, NOT the temperature of the material! _____

NOT the temperature of the material!
$$P_{\rm th} = n_e kT \sim n_e m_e v_{\rm th}^2 \quad \text{b/c} \quad v_{\rm th} \approx \sqrt{\frac{kT}{m_e}}$$

$$v_{\rm th} \approx \frac{\Delta p}{m_e} \sim \frac{\hbar n_e^{1/3}}{m_e} \quad \text{b/c} \quad \Delta x \sim V^{1/3} \sim n_e^{-1/3}$$

$$P_{\rm degen} \sim n_e m_e (\Delta v)^2 \sim \frac{\hbar^2 n_e^{5/3}}{m_e}$$

White Dwarfs

Leftover C core of a low mass ($M\sim0.7~M_{\odot}$) star

$$P_{\rm degen} \sim n_e m_e (\Delta v)^2 \sim \frac{\hbar^2 n_e^{5/3}}{m_e} \hspace{-0.5cm} \longleftarrow \hspace{0.5cm} {\rm Set \hspace{0.1cm} these \hspace{0.1cm} equal \hspace{0.1cm}} \longrightarrow P_{\rm c} \sim \frac{GM^2}{R^4}$$

$$n_e^{5/3} = \left(\frac{M}{m_p R^3}\right)^{5/3} \hspace{1cm} \text{Solve for R}$$

$$R \sim \frac{\hbar^2}{Gm_e m_p^2} \left(\frac{M}{m_p}\right)^{-1/3} \approx 0.01 R_{\odot} \left(\frac{M}{0.7 M_{\odot}}\right)^{-1/3}$$

More massive WDs are smaller!

Why?

Also, because they have $M \sim M_{sun}$ but are 100x smaller, their surface gravity is much stronger, producing strongly pressure-broadened absorption lines

Can a White Dwarf have any mass?

$$P_{\text{degen}} \sim n_e m_e (\Delta v)^2 \sim \frac{\hbar^2 n_e^{5/3}}{m_e}$$

As a WD becomes more massive, the pressure has to increase — what will cause the pressure to max out?

$$\Delta v \sim c$$

$$M_{\rm Ch} \sim \left(\frac{\hbar^3 c^3}{G^3 m_p^4}\right)^{1/2} \sim 2M_{\odot}$$

Called the Chandrasekhar mass Modern calculations give 1.4 M_{sun}

Initial mass of star	WD type
$M < 0.5 M_{\odot}$	He
$0.5M_{\odot} < M < 5M_{\odot}$	C/O
$5M_{\odot} < M < 7M_{\odot}$	Ne/Mg

Neutron Stars are supported by neutron degeneracy pressure

Supernovae!

Electron degeneracy pressure fails

Electrons absorbed into protons in nuclei creating neutrons

$$p + e^- \rightarrow n + \nu_e$$

Outer layers bounce off of forming NS (or pressure wave), causing star to explode

Historical SNe are now Supernova Remnants (SNRs)

Crab Nebula 1054

Cassiopeia A ~1680 (not clearly recorded)

Tycho SNR 1572

Can watch them expand!

Neutron Stars / Pulsars HST image MXVVVV(a) Ground-based image (b) Visible-light image (c) X-ray image Pulsar Pulsar Filaments of gas Synchrotron emission from ejected by the supernova explosion pulsar wind $\underset{G}{\text{MM}} \underset{\textbf{X}}{\text{U}} \underset{\textbf{V}}{\text{I}} \underset{\textbf{R}}{\text{R}}$ Exploded 1054

Pulsars emit pulses at all wavelengths

When formed, rotates with a period of ~ 10-100 ms

Realistic simulation of the magnetic field of a pulsar:

https://www.youtube.com/
watch?v=jwC6_oWwbSE

Millisecond Pulsar: https://www.youtube.com/ watch?v=MPpDTvYL5ik

Black Widow Pulsar:

https://www.youtube.com/
watch?v=-SoZ1xvCpMw

ASTR/PHYS 3070: Foundations Astronomy

Can a Neutron Star have any mass?

Neutron degeneracy pressure will also eventually fail

$$M_{\rm max,NS} \approx 3 M_{\odot}$$

Once a NS reaches the critical mass, its collapse can no longer bed stopped. All of its mass will end up (as far as we know) in a single point at the center of the black hole, called the <u>singularity</u>.

Why is it called a singularity?

Roger Penrose won the Nobel Prize this year for mathematically proving that black holes must have singularities at their centers, *IF* general relativity is the correct theory of gravity.

Black Holes

If the Sun suddenly collapsed and formed a black hole, what would happen to the Earth?

For a spherically symmetric object, its gravitational force (outside the object) is identical to that of an object with the same mass all at r = 0 —> exactly the case of a black hole!

The escape speed for a BH is the same as usual then, but b/c we can get much closer to them, the escape speed can get really high

$$v_{\rm esc} = \left(\frac{2GM}{r}\right)^{1/2}$$

Set $v_{esc} = c$ (speed of light)

$$r_{\mathrm{Sch}} = \frac{2GM}{c^2}$$

Schwarzschild radius
The spherical surface defined by this radius is called the event horizon

Black Holes

Spaghettification

 $F_{\rm g}$ changes so quickly with radius that gravitational tidal forces (the difference in $F_{\rm g}$ between your head and your feet) become strong enough to rip you apart as you fall towards a BH's singularity

Other effects (e.g., explaining Interstellar)

BH with accretion disk (no gravitational lensing)

What it would actually look like

Gravitational Lensing

Light follows shortest path b/t 2 points, but space-time curved, so light rays are curved

Time Dilation

Time passes slower the closer you are to a massive object (GPS satellite clocks "have more ticks" than our clocks in a given interval of time)

Gravitational Redshift

Light has to "climb out" of a gravitational potential well, losing energy — light with less energy has a longer wavelength (just outside the event horizon, light is nearly infinitely redshifted)

Fall 2021: Week 13a

Observing real NSs and BHs

Star's life determined mostly by its initial mass

White Dwarf:

 $M < 7M_{\odot}$

Neutron Star:

 $7M_{\odot} < M < 18M_{\odot}$

Black Hole:

 $M > 18 M_{\odot}$

