

ASTRYPHYS 3070: Foundations Astronomy

Week 15 Tuesday

Today's Agenda

- Extragalactic distances
- Large Scale Structure (LSS)
- Evolution
- Early Universe

Announcements / Reminders

- HW 10 due this Friday @11:59pm
 - HW 11 also available, due next week
- Read Chapters 20 & 23.0-3 (& 24)
- HEAP TODAY @ 4pm
 - LSS / Cosmology probed through weak lensing!
- Colloquium Friday @ 2pm
 - Intercellular Communication & Drug Delivery

Project Presentations

- ~20 groups, need to get through
 10+ per day
- Aim for ~5 min presentations
- 10% of your course grade is based on class participation (attendance / asking questions / group work)
 - Asking questions after presentations counts toward your participation!
 - Completing Feedback forms also counts (but less)
- Project is 20% of your course grade (3/4 project, 1/5 prez, 1/20 paragraph description)

	Your Na mmunicating Science: Pee our peers' projects. Feedback will be	
Presenter Name(s):	 	
Did the project and presentation	improve your understanding of th	ne concept?
Which aspect did you feel was n	nost instructive?	
Project Presentation	Both were equally useful	Neither were useful
Any suggestions for how the fina	I copy could be improved before	it is submitted:

December 15th: Archival Copy of Project Due

December 17th: Final Exam

Fall 2021: Week 15b

ASTR/PHYS 3070: Foundations Astronomy

Parallax

Type la SNe

Spectroscopic Parallax

ASTR/PHYS 3070: Foundations Astronomy

Fall 2021: Week 15b

We live in an expanding "balloon universe"

If expansion constant, then can estimate the age of the universe

$$t = \frac{d}{v_r} = \frac{d}{H_0 d} = \frac{1}{H_0}$$

ASTR/PHYS 3070: Foundations Astronomy

Fall 2021: Week 15b

Finger of God: the Coma Cluster

Galaxy Surveys

Why does the pattern look different at high redshifts?

Cosmology

How does the expansion speed change with time?

When dense, the gravitational force is stronger (But also the expansion speed was higher)

Like shooting a cannonball straight up:

- 1) v < v_{esc}: go up and come back down
- 2) $v = v_{esc}$: stop when infinitely far away
- 3) $v > v_{esc}$: reach coasting velocity

Fall 2021: Week 15b

Same is true if all particles exploding away from each other

Friedmann Equation

Master equation of the universe

Curvature of space (Flat =0, spherical <0, or hyperbolic >0 geometry?)

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3c^{2}}u(t) + \frac{\kappa c^{2}}{r_{c,0}^{2}}\frac{1}{a(t)^{2}} + \frac{\Lambda}{3}$$

Hubble parameter (Speed of expansion)

"Energy density"
(Sum of rest mass & KE of all particles + radiation)

Cosmological constant

(Dark energy)

Possible Models of the Expanding Universe

EXPANSION OF THE UNIVERSE

Many different kinds of observations agree

What happens if we roll back the clock to the early universe?

At some point in the past, universe so hot it is ionized —> opaque

(a) Before recombination:

- Temperatures were so high that electrons and protons could not combine to form hydrogen atoms.
- The universe was opaque: Photons underwent frequent collisions with electrons.
- Matter and radiation were at the same temperature.

(b) After recombination:

- Temperatures became low enough for hydrogen atoms to form.
- The universe became transparent: Collisions between photons and atoms became infrequent.
- Matter and radiation were no longer at the same temperature.

Near perfect BB everywhere on the sky

Spatial variations on different scales

Go further back, hot enough for H—>He fusion

Relative Contents of the Universe

Way further back: origin of structure (inflation?)

Initial quantum density perturbations amplified by Inflation after the Big Bang.

Called Hierarchical Structure Formation

Universe is opaque

Electrons & ions combine (recombination)

Universe gets ionized again (reionization)

The Deep Future (maybe?)

((This scenario assumes protons decay))

Primordial Era
Stelliferous Era
Degenerate Era
Black Hole Era
Dark Era

10⁵ yr 10¹⁴ yr 10³⁹ yr 10¹⁰⁰ yr infinity?