Midterm 2 Practice Problems

Midterm 2 on November 11 from 10:45am-12:05 pm, in class

Exam Instructions:

Please show all work, writing solutions/explanations clearly, or no credit will be given. If you get stuck or don't know how to solve a problem, write down what you do know about the topic. Reference to an $8.5 \times 11''$ equation sheet (both sides usable) and a calculator is allowed. Use of the textbook, notes, homeworks, internet, or other online sources is **not** allowed. The exam represents your individual work; do not copy from others.

- 1. While doing a planetary transit survey, you find an exoplanet around a nearby solar twin (i.e., $M_* = 1 M_{\odot}$, $R_* = 1 R_{\odot}$). The depth of this exoplanet's transits is $\delta F/F = 0.01$, and the time between successive transits is P = 32.0 days. The host star also has a known peak radial velocity of v = 65 m s⁻¹.
 - (a) What is the semi-major axis of the planet's orbit?

(b) What is the radius of the planet?

- 2. You take a spectrum of a star and determine its spectral type to be G2. You notice the widths of its Balmer absorption lines are narrower than the widths of the same lines in the Sun.
 - (a) What can you conclude about the luminosity class of the star? Justify your answer.

(b) If both the mass and the radius of the star are $10 \times$ larger than the mass and radius of the Sun, what is the star's surface gravity?

(c) If the star's composition is comparable to that of the Sun (i.e., $\mu \approx \mu_{\odot}$), how should its central temperature T_c compare to the Sun's?

- 3. In high mass stars, silicon-28 (²⁸Si, mass of 27.9769 $m_{\rm u}$) is fused into ⁴⁰Ca (39.9626 $m_{\rm u}$) through a chain of reactions involving 3 alpha particles (⁴He, 4.0026 $m_{\rm u}$) and intermediate products ³²S (31.9721 $m_{\rm u}$) and ³⁶Ar (35.9675 $m_{\rm u}$).
 - (a) How much energy is produced by each reaction?

(b) If 0.05 M_{\odot} of silicon is completely burned into calcium over 1000 years, what should the star's luminosity be (in units of L_{\odot}) assuming all photons coming from the star are produced in these reactions?

- 4. Imagine you observe a star through a gas cloud, and you measure its V-band magnitude to be $m_V = 15.0$ and its color to be B V = 1.3.
 - (a) If the cloud's optical depth is $\tau_V \approx 5$, what would the star's apparent magnitude be in the absence of the cloud?

(b) Assuming that the local reddening law holds in the cloud (i.e., $R_V \approx 3.1$), what would the star's apparent *B* magnitude be in the absence of the cloud?