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How much visible matter is there?

Can only see matter that emits light. Because astronomers do things in
relative terms, we compare to the Sun:
Surveys tell us that in the local universe (M/Ly) =1 Mg/Lg v

(out to d ~ 0.1¢/Hy)
the luminosity density in the V band is
U — 1.1 x 108 I Mpe—3 But of course, different stars have different
v o,V P M/L values:
where Loy ~ 0.12L5 =~ 4.6 x 10%° W

Ostar: M =60 My, L~2x10* Loy

Bu_t we _want their mass, VYhiCh we can (M/Lv) = 0.003 My /Lo v
infer if we know the typical
mass-to-light ratio Mstar: M =0.1 Mg, L=5x107° Loy

(M/Lv) =2000 My/Lo v
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Mass function of stars
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Mass function of stars
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e mmf i s 1;() but most light from O star
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<M/L®’V> ~ 0.3 M@/LQ’V
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Mass function of stars
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quiescent (red and dead) galaxies
(M/Lo,v) =8 Mg/Lo,v

mix of quiescent & SF galaxies
Px,0 = <M/L®,V>‘IJV
~ 4 x 10° My Mpc™°

P=,0
Q*,O —
Px,c

4% 10° Mg Mpc™
T 1.28 x 1011 M, Mpc™?
~ 0.003
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Not all baryons are In stars, however

cosmological simulation
showing the “warm-hot” gas in
between galaxies in
intergalactic space
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Group of Galaxies -




Virgo Cluster
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http://seds.org/messier/more/virgo_pix.html
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The Coma Cluster

Mcoma.gas = 2 X 101 Mg

LComa,V 29 X 1012 L@,V .i
Mcomax = 2 x 101 Mg
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Baryonic Matter

Q.0 < 0.005
Mga,s,O ~ 10 X M*,O

early universe measurements
Qpary.0 = 0.048 £ 0.003

Qo = 0.31

baryonic matter only 15%
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By the time of the Big Bang and thereafter,
normal matter is the subdominant form of
matter in the universe, with some other
form of matter (non-baryonic dark matter)
making up the majority of non-relativistic
matter in the universe

Could be primordial black holes that were
made before this time (i.e., not from stars).
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Dark Matter in Galaxies
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Dark Matter in Galaxies
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Dark Matter in Clusters
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Total mass from the hot gas

d Pyas GM (7)pgas(T)

o Pgas K Tgas

— Pgas—

dr r2

kT yos(T)T d1n pPeas
M _ voeas\' /)T | _ - lFegas
(<7) Gu dlnr

Total mass of clusters alone yield —> QCIUS,O ~ O 2
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Total mass from the hot gas
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Detecting MACHOs via gravitational lensing

magnification

lensed Images

source /\

MAssive staril
Compact
Halo
Object
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Detecting MACHOs via gravitational lensing

Apparent position |

of image \

M . Source (4GM 1 — Ll?) 1/2

o =4GM/c‘b= 2R/d

xd

Gravitational lens (perhaps a brown dwart)

- R = distance to lens (of mass M)
“w:MACHO d = distance to source
RN b = distance between lens and image M\ 2 d —4/2
" opserver Re= Schwarzchild radius of lens (1 M@) (50 kpc>
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Gravitational lensing by galaxy clusters
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strong lensing
. | ‘ .

4

Slight alignment

Galaxies randomly
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weak lensing
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What could (non-baryonic) dark matter be?

cosmic neutrinos?
in the Standard Model, neutrinos are massless (but we now know that’s not the case)

their number density Is set by early universe calculations,
so knowing their mass yields their density parameter

constraints on their mass:

0.019 eV < m,c* < 0.1 eV

lead to constraints on the density parameter:

0.0013 < ©,,¢ < 0.007
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DEPARTMENT OF PHYSICS & ASTRONOMY

CoLLOQUIUM
HET FAcuLTY CANDIDATE

IAN SHOEMAKER

UNIVERSITY OF SOUTH DAKOTA

NEUTRINOS, DARK MATTER,
AND THE QUEST FOR NEW PHYSICS

The capstone discovery of the Higgs Boson marked the
confirmation of the final piece of the well-tested Standard
Model of particle physics. Despite the incredible successes of
the Standard Model, it cannot be the complete description of
nature. Chief among the observational facts requiring new
physics are the existence of neutrino masses and non-
luminous “Dark Matter” which dominates the Universe's
matter budget. In this talk I'll discuss theoretical extensions of
the Standard Model involving dark matter and neutrinos, along
with the broad experimental program currently underway that
will help uncover which the new physics framework nature has
chosen.

Thursday February 22, 2018 '

4:00 pm
Room 102 JFB

Refreshments at 3:30 pm in JFB 219.
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DEPARTMENT OF PHYSICS 8& ASTRONOMY

COLLOQUIUM

HET FAcCULTY CANDIDATE

YUE ZHOU

UNIVERSITY OF MICHIGAN

DARK MATTER BEYOND WEAKLY
INTERACTING MASSIVE PARTICLES

Dark matter (DM) comprises approximately 27% of the energy in the observable
universe. Its properties, such as its mass and interactions, remain largely
unknown. Unveiling the properties of DM is one of the most important tasks in
high energy physics. For the past few years, motivated by possible new physics
at the electroweak scale, many DM experiments have looked for DM with mass at
O(100) GeV. This is not the only possibility, however. Large chunks of parameter
space supported by other well-motivated models remain to be carefully studied.
Exploring these regimes requires creative ideas and advanced technologies. |
will first talk about a novel proposal using superconductors as the target
material for DM direct detection. This setup has the potential to lower the direct
detection mass threshold from a few GeV to keV, consequently probing the
warm dark matter scenario. Then | will present a recent proposal utilizing the
Gravitational Wave (GW) experiments, i.e., LIGO and LISA, to search for ultra-
light dark photon dark matter. We show these GW experiments can go well
beyond existing constraints and probe large regions of unexplored parameter
space. Both proposals are under serious investigation by experimental groups
and likely to be carried out in the near future.

Thursday March 1, 2018
4:00 pm
Room 102 JKB

Refreshments at 3:30 pm in JFB 219.
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Non-baryonic dark matter candidates

WIMPs

Weakly Interacting Massive Particles
(supersymmetric extension of the Standard Model)

AXions

(hypothetical particle that explains why quantum chromodynamics does not “break CP symmetry”)

Sterile Neutrinos
(right handed partner to known neutrinos, but doesn’t experience weak force interactions)
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WIMPs

very loosely defined (any new particle that’s relatively massive
and interacts via gravity [and potentially other sources])

supersymmetric extensions of the SM (positing more massive
versions of all known particles) naturally lead to WIMP
production in the Big Bang —> called the “WIMP miracle”
(direct detection searches and the LHC have failed to find WIMPs
at these “miraculous” masses)

their self-annihilation (into gamma ray photons) could be
detected Iin dark matter concentrations, such as the centers of
galaxies and clusters of galaxies
(no definitive observations — without other reasonable
explanations — have been made)
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Sun
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in QCD, strong interactions permit violations of charge
conjugation (that if you swap the charge signs of particles and
anti-particles, the laws of physics remain unchanged) and parity
(no “handedness” in interactions)

—> would lead to an electric dipole moment for the neutron,
which has been measured to be consistent with zero (with an
upper limit making it very small)

—>—> this requires a term, which in SM theory could be any

- number b/t 0 and 2pi, to be very close to 0, and by “naturalness”

arguments this is a “problem”
—>—>—> canh be solved if there’s a new particle (the axion) that
could also serve as a dark matter particle

original version of the axion has been ruled out by experiment

current dark matter axion candidates are variations on this idea,
but not as well motivated by theory

can be converted into photons in a strong magnetic field and
detected that way
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Sterile Neutrinos

“sterile” because they don’t interact via the weak
force like SM neutrinos

right-handed chirality (spin vector relative to
momentum)
SM particles have left and right varieties, SM
neutrinos are left-handed only
can have any mass (1 eV to 101° GeV)
their decay would produce 2 photons (each with half
the energy of the neutrino, which for dark matter

would have to be non-relativistic so E=mc?)

detection (and non-detections) at X-ray (keV) energies
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