ASTR 4080 - Week 14

Kecall the secthering equ. for atoms
to interact w/light

$$\Gamma = n_e \sigma_e c$$
 (par sec)
As CMB photons travel, they can still
set scattered by intermining ends
The prob. a photon is scattered is
The prob. a photon is scattered is
expressed by aptrical depth
 $c_* = \int_{t_*}^{t_0} \Gamma(t) dt$
 V_{15} is set
 $scattered$ out
 $f l.o.s.$
 $= 0.066 \pm 0.0016$
from Planet

Can estimate
$$f_{*}$$
 knowing H_{ir} .
Assume every thing is ionized $H + e^{-1}$
we = $h_{p} = h_{barrow} a^{-3}$
define $f_{0} = cre h_{barrow} = 0.0023H_{0}$
 $T_{*} = \int_{0}^{t} \int_{t_{*}}^{t_{0}} \frac{df}{a(t)^{2}}$
charge to a face t , $\frac{d}{dt} a(t) = \dot{a}$ so
 $T_{*} = \int_{0}^{t} \int_{a(t_{*})}^{da} \frac{dt^{2}}{\dot{a}a^{3}} = \int_{0}^{t} \int_{a(t_{*})}^{da} \frac{da}{H(c)a^{n}}$
 $desc from a$
 $to z : = \int_{0}^{t} \int_{0}^{2\pi} \frac{(1t_{*})^{2}dz}{H(z)}$
 $a = (1t_{*})^{1} = \int_{0}^{t} \int_{0}^{2\pi} \frac{(1t_{*})^{2}dz}{H(z)}$
 $(f_{1}-t_{1}) = f_{0} \int_{0}^{2\pi} \frac{(1t_{*})^{2}dz}{H_{0} \int \Omega_{argo}(1t_{*})^{3} + \Omega_{argo}}$
 $(f_{*} = \frac{2}{3R_{-0}} \int_{H_{0}}^{T_{0}} ([\Omega_{-1}](1t_{*})^{3} + \Omega_{argo}]^{V_{2}} - 1)$
 $SLIDES = 2.8 \pm 1.3$, $t_{*} = LSOMyr$

Obs. minuse:
$$d_{p}(t_{o}) \approx 14 G_{pc}$$

total mass inside is $M = p_{m}e^{\frac{4\pi}{3}} d_{p}(t_{o})^{3}$
 $\approx 9.3 \times 10^{2.3} M_{0}$
So the 1st 10¹⁴ Mo region L collapse
is a statistical outlier: $\frac{1}{9.3 \times 10^{9}}$ chance
 $G = e^{\frac{1}{3}\frac{1}{20}} e^{-\frac{1}{3}\frac{1}{20}}$
 $e^{-\frac{1}{3}\frac{1}{20}} e^{-\frac{1}{3}\frac{1}{20}}$
 $e^{-\frac{1}{3}\frac{1}{20}} e^{-\frac{1}{3}\frac{1}{20}}$
 $e^{-\frac{1}{3}\frac{1}{20}} e^{-\frac{1}{3}\frac{1}{20}}$
 $e^{-\frac{1}{3}\frac{1}{10}} e^{-\frac{1}{3}\frac{1}{20}}$
 $e^{-\frac{1}{3}\frac{1}{10}} e^{-\frac{1}{3}\frac{1}{20}}$
 $e^{-\frac{1}{3}\frac{1}{10}} e^{-\frac{1}{3}\frac{1}{10}\frac{1}{10}}$
 $E^{-\frac{1}{3}\frac{1}{10}} e^{-\frac{1}{3}\frac{1}{10}\frac{1}{10}}$
 $E^{-\frac{1}{3}\frac{1}{10}} e^{-\frac{1}{3}\frac{1}{10}\frac{1}$

ASTR 4080 - Week 13