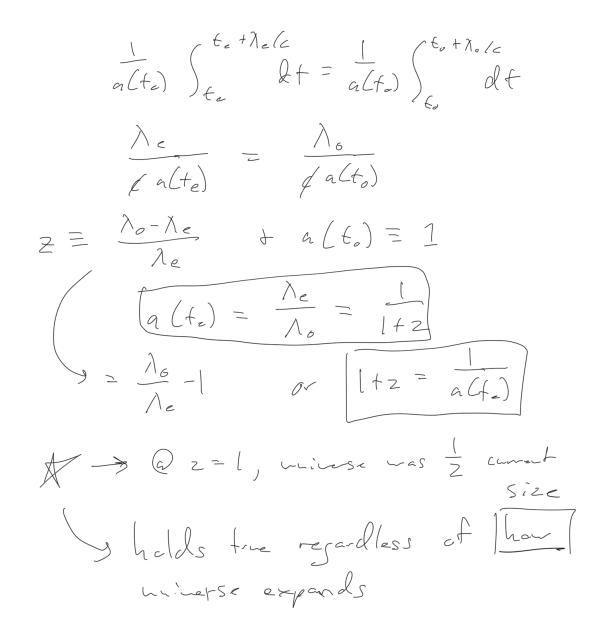

ASTR 4080 - Week 2

Begin by asking: what is an inertial frame? ANS: F=ma is true



Post-late some factor:
$$x' = Y(v)(x - vt)$$

 $c^{2}t^{2} = x^{2} + \cdots$, $c^{2}t^{2} = x^{2} + \cdots$
 $c^{2}(t^{2} = y^{2}(x - vt)^{2} + \cdots$, $y'' = c^{2}t^{2} - x^{2} \Rightarrow y'' + z''$
 $c^{2}t^{2} - y'^{2}(x - vt)^{2} = c^{2}t^{2} - x^{2} \Rightarrow y'' + z''$
 $t^{2} = t^{2} - \frac{x^{2}}{c^{2}} + \frac{Y^{2}}{c^{2}}(x - vt)^{2}$
 $= t^{2}\left[1 + \frac{v^{2}y^{2}}{c^{2}}\right] - 2\frac{xvy''}{c^{2}}t + \frac{x^{2}}{c^{2}}[y^{2} - 1]$
Complicated, Q this point guess b so that
 $eq^{-at} = ca - e - Factored$
 $may be t' = yt g(v, x, t)$
 $t'^{2} = y'' \left[t^{2}\left[\frac{1}{y^{2}} + \frac{v^{2}}{c^{2}}\right] - \frac{2}{c^{2}}t + \frac{x^{2}}{c^{2}}t + \frac{x^{2}}{c^{2}}(1 - V_{T}^{2})\right]$
guess that $g(v, x, t) = t + \cdots$
 $vant \frac{1}{y^{2}} + \frac{v^{2}}{c^{2}} = 1$

if
$$\frac{1}{r^{2}} + \frac{v^{2}}{c^{2}} = 1$$
, then
 $Y^{2} = \frac{1}{1 - \sqrt{c^{2}}} \int \frac{1}{c^{2}c^{2}} \int \frac{1}{c^{2}c^{2}} \int \frac{1}{c^{2}} \int$

--> slides

will scoolesic:
$$c^2 df^2 = a(f)^2 dr^2$$

so $c \frac{dt}{a(f)} = dr$
can integrate this to get the distance
blt us d a galacy Q 2 times,
 $-/\Delta t = 0$ so historice $r_1 = r_2$
consider a more of light: $t = r_2$
consider a more of light: r_2
 $consider a more of light: r_2
 $construct for $r_1 = r_2$
 $consider a more of light: r_2
 $constant for r_2
 $construct for r_2
 $construct for r_2
 $construct for r_2
 r_2
 r_2
 r_2
 r_2
 r_2
 r_2
 r_3
 r_4
 r_5
 r_4
 $r_4$$$$$$$$$$$$$

ASTR 4080 - Week 1