## Olber's Paradox (1823)

## Infinitely old, infinitely large universe full of stars

# Sky should be as bright as the disk of the Sun!

**ASTR/PHYS 4080: Introduction to Cosmology** 





## Getting distances to the nebulae



**ASTR/PHYS 4080: Introduction to Cosmology** 

Hubble estimated distances to the nebulae, resolved in favor of Curtis and the island universe theory

Also, measurements of line shifts in spectra, interpreted as Doppler velocity shifts, demonstrated that farther away galaxies are "moving" away from us faster





# **Cosmological Principle**

# Radio sources from NVSS (Condon et al. 2003)

**ASTR/PHYS 4080: Introduction to Cosmology** 

57 - 7 00 mill

The universe is isotropic on very large scales. (>100Mpc).

> **Copernican Principle** => homogeneous & isotropic

(Cosmological Principle)





# **Elementary Particles**



**ASTR/PHYS 4080: Introduction to Cosmology** 

### **Standard Model of Elementary Particles + Gravity**







Carl Friedrich Gauss 1777 - 1855

Space is not (grossly) non-Euclidean

R = Radius of CurvatureA = area of triangle

Only possible geometries that are homogeneous/isotropic

**ASTR/PHYS 4080: Introduction to Cosmology** 







### Lengths of Geodesics (3D, polar coords) straight lines in a given geometry

$$d\Omega^2 \equiv d\theta^2 + \sin^2\theta d\phi^2$$

flat or Euclidean space:

$$d\ell^2 = dr^2 + r^2 d\Omega^2$$

elliptical or spherical space:  $d\ell^2 = dr^2 + R^2 \sin^2 \frac{r}{R} d\Omega^2$ 

hyperbolic space:

$$d\ell^2 = dr^2 + R^2 \sinh^2 \frac{r}{R} d\Omega^2$$

**ASTR/PHYS 4080: Introduction to Cosmology** 

### < OR >

$$d\ell^2 = dr^2 + S_\kappa(r)^2 d\Omega^2$$

$$S_{\kappa}(r) = \begin{cases} R \sin \frac{r}{R} & (\kappa = +1) \\ r & (\kappa = 0) \\ R \sinh \frac{r}{R} & (\kappa = -1) \end{cases}$$



## Minkowski & Robertson-Walker Metrics

metrics define the distance between events in spacetime

Minkowski (no gravity: metric in

 $ds^2 = -$ 

Robertson-Walker (with gravity, if spacetime is homogeneous & isotropic)

$$ds^{2} = -c^{2}dt^{2} + a(t)[dr^{2} + S_{\kappa}(r)^{2}d\Omega^{2}]$$
ight travels along  
ull geodesics, i.e.:  

$$ds^{2} = 0$$

$$(r, \theta, \phi)$$
comoving coordinates

**ASTR/PHYS 4080: Introduction to Cosmology** 

n

- SR)  
- 
$$c^2 dt^2 + dr^2 + r^2 d\Omega^2$$



### **Proper Distance**

In an expanding universe, how do we define the distance to something at a cosmological distance?

$$ds = a(t)dr$$
  
$$t) = a(t) \int_0^r dr = a(t)r$$

$$ds = a(t)dr$$
  
$$d_p(t) = a(t) \int_0^r dr = a(t)r$$

$$\dot{d_p} =$$

 $v_p(t_0) \equiv H_0 d_p(t_0)$ 

**ASTR/PHYS 4080: Introduction to Cosmology** 

The distance between 2 objects at the same instant of time is given by the RW metric: called the "proper distance"

$$\dot{a}r = \frac{a}{a}d_p$$
  
$$\dot{a}_0) \rightarrow d_H(t_0) \equiv c/H_0$$

٠





## **Redshift and Scale Factor**

Proper distance is not usually a practical distance measure. For example, you might rather want to know the distance light has traveled from a distant object so you know the "lookback time" or how far you're looking into the past.

Relatedly, we measure redshift, but would like to know how redshift is related to the change in scale factor between emission and observation, which is:

 $1 + z = \frac{a}{a}$ 

**ASTR/PHYS 4080: Introduction to Cosmology** 

$$\frac{a(t_0)}{a(t_e)} = \frac{1}{a(t_e)}$$



Relativistic equation similar  $\left(\frac{a}{a}\right)^2 = \frac{8\pi 6}{3c^2} \epsilon(t) - \frac{Kc^2}{R_0^2} a(t)^2$ 



 $[-](E)^2 = \frac{8\pi 6}{3c^2} z(E) - \frac{Kc^2}{R^2 a(E)}$ 



Boundary case is K=0, so the critical (energy) density is  $L(f) = \frac{\Sigma(f)}{\mathcal{E}_{c}(f)}, \quad \mathcal{D}_{o} = \frac{\Sigma(f_{o})}{\mathcal{E}_{c}(f_{o})} \qquad \left( \frac{\mathcal{E}_{o}}{\mathcal{E}_{c}(f_{o})} - \frac{\mathcal{E}_{o}}{\mathcal{E}_{c}(f_{o})} - \frac{\mathcal{E}_{o}}{\mathcal{E}_{c}(f_{o})} - \frac{\mathcal{E}_{o}}{\mathcal{E}_{c}(f_{o})} \right)$ 





| $\frac{G}{2} \mathcal{E} - \frac{Kc^2}{R_o^2 a^2}$ |                            |
|----------------------------------------------------|----------------------------|
| E+V) ~ O                                           |                            |
| - WE                                               |                            |
| $\frac{\alpha}{2} = \frac{1}{3}c^2$                | $- \left[ 2 + 3 P \right]$ |

Spring 2018: Week 05



11





**Evolution of Components** 



Spring 2018: Week 05



12

Can now solve for a(t) generically, if not necessarily analytically:

$$\dot{a}^{2} = \frac{8\pi G}{3c^{2}} \sum_{i} \varepsilon_{i,0} a^{-1-3w_{i}} - \frac{\kappa c^{2}}{R_{0}^{2}}$$

- Empty
- Matter only
- Lambda only (+curvature)
- Various Combinations!

### **ASTR/PHYS 4080: Introduction to Cosmology**

### Model Universes

• classic case: open, closed, flat Radiation only (+curvature)







 $H_{0}^{-1}a = \left[\Omega_{v_{0}0}a^{-2} + \Omega_{m_{0}0}a^{-1} + \Omega_{v_{0}0}a^{-1} + \Omega_{v_{0}0}a^{-1} + \Omega_{v_{0}0}a^{-1} + (1 - \Omega_{v_{0}})\right]^{1/2}$   $SZ_{A,0}a^{2} + (1 - \Omega_{v_{0}})\left[\Omega_{v_{0}0}^{1/2} + \Omega_{v_{0}0}^{1/2} + \Omega_{v_{0}0}^{$ 









ന



**ASTR/PHYS 4080: Introduction to Cosmology** 

Matter + Lambda + Curvature



Spring 2018: Week 04

15

## **Benchmark Model**



**ASTR/PHYS 4080: Introduction to Cosmology** 

