Homework 11

Due April 22 at 10:45am via Canvas

Please show all work, writing solutions/explanations clearly, or no credit will be given. You are encouraged to work together, but everyone must turn in independent solutions: do not copy from others or from any other sources.

- 1. For the Schechter luminosity function of galaxies, find the total luminosity density Ψ as a function of L^* , Φ^* , and α . What is the numerical value of the luminosity density Ψ_V in the V band, given $L_V^* = 2 \times 10^{10} L_{\odot,V}$, $\Phi^* = 0.005 \text{ Mpc}^{-3}$, and $\alpha = -1$?
- 2. On a mass scale $M = 10^{17} \text{ M}_{\odot}$, the root mean square mass fluctuation is $\delta M/M = 0.12$ today (inferred from Ryden Figure 11.5). Do you expect to see any gravitationally collapsed structures with that mass in the directly visible universe today? Explain why or why not.
- 3. Consider the Big Rip scenario from HW 4, Problem #2 (http://www.astro.utah.edu/~wik/courses/astr4080spring2021/hw/hw04. pdf). Since the energy density has the dependence $\varepsilon \propto a^{-3(1+w)}$, the energy density ε_p (with $w_p < -1$) of phantom energy increases as the universe expands; when ε_p/c^2 becomes larger than the mass density of a bound object, the object will be ripped apart. Suppose that the universe contains both matter and phantom energy with $w_p = -1.1$.
 - (a) If the density parameters of the two components are $\Omega_{m,0} = 0.3$ and $\Omega_{p,0} = 0.7$, at what scale factor a_{gal} will the descendent galaxy of the merger between the Milky Way and M31 be ripped apart?
 - (b) At what scale factor a_* will a Sun-like star be ripped apart?
 - (c) Using the result from the HW 4 problem, how many years before the Big Rip will that Sun-like star be ripped apart? [Hint: the Big Rip is defined as the time $t_{\rm rip}$ when $a \to \infty$.]