Midterm 2 Brief Review

Benchmark Model

 $d_{p}(f_{-}) = \frac{1}{1+z} d_{p}(f_{-})$

Practical Distance Measures

Luminosity Distance

ASTR/PHYS 4080: Introduction to Cosmology

Angular Diameter Distance

Spring 2018: Week 15

Practical Distance Measures

$$\left[\mathcal{A}_{L} = S_{K}(v) \left(\left[+z \right] \right) \right]$$

ASTR/PHYS 4080: Introduction to Cosmology

ds² = -c²dt² + a²[dr⁻⁺ + S_K(-)²ds²] $S_{K} \begin{pmatrix} R_{o}si-V/R_{o} & |L=f| \\ R_{o}si-L/R_{o} & |L=-l \\ R_{o}si-L/R_{o} & |L=-l \end{pmatrix}$ $\int S_{K}(r) = d_{A}$ $\int I \neq Z$ $|L=0, \quad d_A = \frac{d_p(f_-)}{1+2} = \frac{d_L}{(1+2)^2}$

How distances are affected by underlying cosmology

$$d_L \approx \frac{cz}{H_0} \left(1 + \frac{1 - q_0}{2} z \right) \qquad \qquad q_0 = \Omega_{r,0} + \frac{1}{2} \Omega_{m,0} - \Omega_{\Lambda,0}$$

Luminosity Distance

ASTR/PHYS 4080: Introduction to Cosmology

$$d_A \approx \frac{cz}{H_0} \left(1 - \frac{3+q_0}{2} z \right)$$

Angular Diameter Distance

Dark Matter in Galaxies

$$M(R) = \frac{v^2 R}{G} = 1.05 \times 10^1$$

ASTR/PHYS 4080: Introduction to Cosmology

$$M_{\odot} \left(\frac{1}{235 \text{ km s}^{-1}} \right) \left(\frac{1}{8.2 \text{ kpc}} \right)$$

Dark Matter in Galaxy Clusters

ASTR/PHYS 4080: Introduction to Cosmology

Virgo Cluster 0.5-2.0 keV

Snowden, ROSAT

Spherical, Relaxed In Hydrostatic Equilibrium (HSE)

> Pressure Balances Gravity —> Maps to Total Mass: Virial Theorem!

Spring 2021: Week 10

1 Degree

Surface of Last Scattering

Thomson cross-section ("size" of an electron) $\sigma_{\rho} = 6.65 \times 10^{-29} \text{ m}^2$

mean free path of a photon ∧_{mfp} $n_{\rho}\sigma_{\rho}$

ASTR/PHYS 4080: Introduction to Cosmology

Scattering interaction rate

$$\Gamma = \frac{c}{\lambda} = n_e \sigma_e c$$

When photons scatter off of electrons at the same rate as the expansion rate:

$$H(z) = \Gamma(z)$$

Photons and baryons will "decouple" from each other

density of particles of
type x with momenta b/t

$$p \rightarrow p + dp$$
 $n_x(p)dp = g_x \frac{4\pi}{\hbar^3} \frac{p^2 dp}{\exp([E - \mu_x]/kT) \pm 1}$ (minus for bosons,
 $g \rightarrow 2$ (for non-nucleons, $g_{H=4}$)
 $chemical potential of photons = 0$
 $\mu_H = \mu_p + \mu_e$
 $n_\gamma = \frac{2.4041}{\pi^2} \left(\frac{kT}{\hbar c}\right)^3$
 $n_x = g_x \left(\frac{m_x kT}{2\pi\hbar^2}\right)^{3/2} \exp\left(\frac{-m_x c^2 + \mu_x}{kT}\right)^{3/2}$
 $n_x = g_x \left(\frac{m_x kT}{2\pi\hbar^2}\right)^{3/2} \exp\left(\frac{-m_x c^2 + \mu_x}{kT}\right)^{3/2}$

Saha Equation

neutron-proton ratio

ASTR/PHYS 4080: Introduction to Cosmology

$$n_x = g_x \left(\frac{m_x kT}{2\pi\hbar^2}\right)^{3/2} \exp\left(\frac{-m_x c^2 + \mu_x}{kT}\right)$$
$$\frac{n_n}{n_p} = \exp\left(-\frac{(m_n - m_p)c^2}{kT}\right)$$

 $\Gamma = n_{\nu} c \sigma_w$

ASTR/PHYS 4080: Introduction to Cosmology

Creation process depends on relative abundances at any given time, so have to calculate computationally

Nucleosynthesis doesn't run to completion like in stars – rapidly dropping temperature cuts it off and "freezes" abundance pattern

Exact yields depend most on baryonto-photon ratio: η (determines temperature of nucleosynthesis)

Baryonic Matter

$\Omega_{*,0} \lesssim 0.005$ $M_{\rm gas,0} \approx 10 \times M_{*,0}$

early universe measurements $\Omega_{\rm bary,0} = 0.048 \pm 0.003$

$\Omega_{m,0} = 0.31$ baryonic matter only 15%

ASTR/PHYS 4080: Introduction to Cosmology

By the time of the Big Bang and thereafter, normal matter is the subdominant form of matter in the universe, with some other form of matter (non-baryonic dark matter) making up the majority of non-relativistic matter in the universe

Could be primordial black holes that were made before this time (i.e., not from stars).

Spring 2021: Week 10

Benchmark Model

