

Week 4

Read thru Chapter 5 Also read the Key Concepts for those chapters

Today: Eqn of States & Model Universes

HW 3 due Thursday HW 4 available

ASTR/PHYS 4080: Introduction to Cosmology

Office Hours: Tuesdays 2-3pm Wednesdays 11am-12pm

Only available first 20min on Tuesday

Equations of the Universe

Friedmann Eqn: gravity

Fluid Eqn: <u>conserve energy</u>

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0$$

Eqn of State: relations b/t thermodynamic properties $P = w\varepsilon$

ASTR/PHYS 4080: Introduction to Cosmology

$$\varepsilon_{\Lambda} \equiv \frac{c^2}{8\pi G} \Lambda$$

Ideal Gas Law

PV = NRT P = nkT $P = -\frac{\rho}{kT}$

Acceleration Equation

 $\frac{\ddot{a}}{a} = \frac{4\pi G}{3c^2}$

ASTR/PHYS 4080: Introduction to Cosmology

$$= \underbrace{+}_{\varepsilon} \dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0$$

$$\downarrow$$

$$f(\varepsilon + 3P) + \frac{\Lambda}{3}$$
If Λ const, ε also const b/c $\varepsilon_{\Lambda} \equiv \frac{c^2}{8\pi G}\Lambda$
so $P = -\varepsilon_{\Lambda} = -\frac{c^2}{8\pi G}\Lambda$

ASTR/PHYS 4080: Introduction to Cosmology

Evolution of Components

Relativistic Component: "Radiation" = Photons + Neutrinos

ASTR/PHYS 4080: Introduction to Cosmology

CMB dominates energy density of photons in universe today

Don't know the mass of neutrinos, but energy density dominated by momentum and decoupling in early universe. Calculated to be:

$$\varepsilon_{\nu} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \varepsilon_{\rm CMB} = 0.227 \varepsilon_{\rm CMB}$$

radio

True for each neutrino flavor, so total is 3x above.

$$\varepsilon_{\rm CMB,0} = \alpha T_0^4 = 0.2606 \ {\rm MeV} \ {\rm m}^{-3}$$

Relativistic, Non-rel., & Λ Components

Radiation

$\varepsilon_{\rm CMB,0} = \alpha T_0^4 = 0.2606 \text{ MeV m}^{-3}$ $\varepsilon_{\rm crit,0} = 4870 \text{ MeV m}^{-3}$

$$\Omega_{r,0} = \frac{1.681\varepsilon_{CMB,0}}{\varepsilon_{crit,0}} = 9 \times 10^{-5}$$
(neutrinos have ~68% of the energy density of CMB photons)

ASTR/PHYS 4080: Introduction to Cosmology

 $\begin{array}{ll} \mbox{Matter:} & \Omega_{m,0} \approx 0.31 \\ \mbox{Dark Energy:} & \Omega_{\Lambda,0} \approx 0.69 \end{array}$

Using evolution of each component with a, can compute when matterdark energy and matter-radiation components were comparable

Can now solve for a(t) generically, if not necessarily analytically:

$$\dot{a}^{2} = \frac{8\pi G}{3c^{2}} \sum_{i} \varepsilon_{i,0} a^{-1-3w_{i}} - \frac{\kappa c^{2}}{R_{0}^{2}}$$

- Empty
- Matter only
- Lambda only (+curvature)
- Various Combinations!

ASTR/PHYS 4080: Introduction to Cosmology

Model Universes

• classic case: open, closed, flat Radiation only (+curvature)

ASTR/PHYS 4080: Introduction to Cosmology

Empty

Only 1 Constituent in a Flat Spacetime

ASTR/PHYS 4080: Introduction to Cosmology

Only 1 Constituent in a Flat Spacetime

ASTR/PHYS 4080: Introduction to Cosmology

Classical Cosmology: Matter + Curvature

ASTR/PHYS 4080: Introduction to Cosmology

Spring 2021: Week 04

Classical Cosmology: Matter + Curvature

ASTR/PHYS 4080: Introduction to Cosmology

$$\kappa = 0, \ \Omega_0 = 1; \ a(t) = (t/t_0)^{2/3}$$

$$\kappa = +1, \ \Omega_0 > 1; \ a(\theta) = \frac{1}{2} \frac{\Omega_0}{\Omega_0 - 1} (1 - \cos \theta)$$

$$t(\theta) = \frac{1}{2H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}} (\theta - \sin \theta)$$

$$\kappa = -1, \ \Omega_0 < 1; \ a(\eta) = \frac{1}{2} \frac{\Omega_0}{1 - \Omega_0} (\cosh \eta - 1)$$

$$t(\eta) = \frac{1}{2H_0} \frac{\Omega_0}{(1 - \Omega_0)^{3/2}} (\sinh \eta - \eta)$$

Flat: Matter + Cosmological Constant

ASTR/PHYS 4080: Introduction to Cosmology

ന

ASTR/PHYS 4080: Introduction to Cosmology

Matter + Lambda + Curvature

Spring 2021: Week 04

Benchmark Model

ASTR/PHYS 4080: Introduction to Cosmology

Benchmark Model

Spring 2021: Week 04

ASTR/PHYS 4080: Introduction to Cosmology

https://tritonstation.wordpress.com/ 2019/01/28/a-personal-recollection-ofhow-we-learned-to-stop-worrying-andlove-the-lambda/

Spring 2021: Week 04

