Preface

The first edition of this book was based on my lecture notes for an upper-level
undergraduate cosmology course at The Ohio State University. The students tak-
ing the course were primarily juniors and seniors majoring in physics and astron-
omy. In my lectures, I assumed that my students, having triumphantly survived
freshman and sophomore physics, had a basic understanding of electrodynamics,
statistical mechanics, classical dynamics, and quantum physics. As far as math-
ematics was concerned, I assumed that, like modern major-generals, they were
very good at integral and differential calculus. Readers of this book are assumed
to have a similar background in physics and mathematics. In particular, no prior
knowledge of general relativity is assumed; the (relatively) small amounts of
general relativity needed to understand basic cosmology are introduced as needed.

The second edition that you are reading now is updated with observational
and theoretical developments during the 14 years that have elapsed since the first
edition. It has been improved by many comments by readers. (My thanks go to the
cagle-eyed readers who caught the typographical errors that snuck into the first
edition.) The second edition also contains an extended discussion of structure
formation in the final two chapters. For a brief course on cosmology, the first ten
chapters can stand on their own.

Unfortunately, the National Bureau of Standards has not gotten around to
establishing a standard notation for cosmological equations. It seems that every
cosmology book has its own notation; this book is no exception. My main moti-
vation was to make the notation as clear as possible for the cosmological novice.

Many of the illustrations in this book were adapted from figures in published
scientific papers; my thanks go to the authors of those papers for granting per-
mission to use their figures or to replot their hard-won data. Particular thanks go
to Avishai Dekel (Figure 2.2), Wendy Freedman (Figure 2.5), David Leisawitz
(Figure 8.1), Alain Coc (Figure 9.4), Richard Cyburt (Figure 9.5), Rien van de
Weygaert (Figure 11.1), Ashley Ross (Figure 11.6), Xiaohui Fan (Figure 12.3),
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and John Beacom (Figure 12.4). Extra thanks are due to Anze Slosar and José
Alberto Vdzquez for their assistance with Figures 6.6, 8.7, and 11.7.

Many people (too many to name individually) helped in the making of this
book. I owe particular thanks to the students who took my undergraduate cos-
mology course at Ohio State University. Their feedback, including nonverbal
feedback such as frowns and snores during lectures, greatly improved the lec-
ture notes on which the first edition was based. The students of the graduate
cosmology course at Ohio State have assisted in the development of the second
edition, by field-testing the end-of-chapter problems, proposing new problems,
and acting as all-around critics of the manuscript. Adam Black and Nancy Gee,
at Pearson Addison Wesley, made possible the great leap from rough lecture
notes to polished book. Vince Higgs and Rachel Cox, at Cambridge University
Press, helped with the second great leap to a new, improved second edition.
The reviewers of the text, in both its first and second editions, pointed out many
omissions and suggested many improvements.

The first edition of this book was dedicated to Rick Pogge, who acted as my
computer maven, graphics guru, personal chef, and general sanity check. Obvi-
ously, there was only one thing to do with such a paragon. Reader, I married him.




Introduction

Cosmology is the study of the universe, or cosmos, regarded as a whole.
Attempting to cover the study of the entire universe in a single volume may
seem like a megalomaniac’s dream. The universe, after all, is richly textured,
with structures on a vast range of scales; planets orbit stars, stars are collected
into galaxies, galaxies are gravitationally bound into clusters, and even clusters
of galaxies are found within larger superclusters. Given the complexity of the
universe, the only way to condense its history into a single book is by a process of
ruthless simplification. For much of this book, therefore, we will be considering
the properties of an idealized, perfectly smooth, model universe. Only near the
end of the book will we consider how relatively small objects, such as galaxies,
clusters, and superclusters, are formed as the universe evolves. It is amusing
to note in this context that the words cosmology and cosmetology come from
the same Greek root: the word kosmos, meaning harmony or order. Just as
cosmetologists try to make a human face more harmonious by smoothing over
small blemishes such as pimples and wrinkles, cosmologists sometimes must
smooth over small “blemishes” such as galaxies.

A science that regards entire galaxies as being small objects might seem,
at first glance, very remote from the concerns of humanity. Nevertheless,
cosmology deals with questions that are fundamental to the human condition.
The questions that vex humanity are given in the title of a painting by Paul
Gauguin (Figure 1.1): “Where do we come from? What are we? Where are
we going?” Cosmology grapples with these questions by describing the past,
explaining the present, and predicting the future of the universe. Cosmologists
ask questions such as “What is the universe made of? Is it finite or infinite in
spatial extent? Did it have a beginning some time in the past? Will it come to an
end some time in the future?”

Cosmology deals with distances that are very large, objects that are very big,
and timescales that are very long. Cosmologists frequently find that the stan-
dard SI units are not convenient for their purposes: the meter (m) is awkwardly
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Figure 1.1 Where Do We Come From? What Are We? Where Are We Going? Paul
Gauguin, 1897-98. [Museum of Fine Arts, Boston]

short, the kilogram (kg) is awkwardly tiny, and the second (s) is awkwardly brief.
Fortunately, we can adopt the units that have been developed by astronomers for
dealing with large distances, masses, and times.

One distance unit used by astronomers is the astronomical unit (AU),
equal to the mean distance between the Earth and Sun; in metric units, 1 AU =
1.50 x 10'" m. Although the astronomical unit is a useful length scale within the
solar system, it is small compared to the distances between stars. To measure
interstellar distances, it is useful to use the parsec (pc), equal to the distance
at which 1 AU subtends an angle of I arcsecond; in metric units, 1pc =
309 x 10'm. For example, we are at a distance of 1.30pc from Proxima
Centauri (a small, relatively cool star that is the Sun’s nearest neighboring star);
we are at a distance of 8500 pc from the center of our galaxy, the Milky Way
Galaxy. Although the parsec is a useful length scale within our galaxy, it is small
compared to the distances between galaxies. To measure intergalactic distances,
we use the megaparsec (Mpc), equal to 10° pe, or 3.09 x 10?2 m. For example,
we are at a distance of 0.76 Mpc from M31 (otherwise known as the Andromeda
galaxy) and 15 Mpc from the Virgo cluster (the nearest big cluster of galaxies).

The standard unit of mass used by astronomers is the solar mass (Mg); in
metric units, the Sun’s mass is 1 Mg = 1.99 x 10 kg. The total mass of our
galaxy is not known as accurately as the mass of the Sun; in round numbers,
though, it is Mgy ~ 10'2 M. The Sun, incidentally, also provides the standard
unit of power used in astronomy. The Sun’s luminosity (that is, the rate at which
it radiates away energy in the form of light) is 1 Lo = 3.83 x 102 watts. The total
luminosity of our galaxy is not known as accurately as the luminosity of the Sun;
a good estimate, though, is Lga = 3 X 10

For times much longer than a second, it is convenient to use the year (yr)
as a unit of time, with 1yr =~ 3.16 X 107 s. In a cosmological context, a year
is frequently an inconveniently short period of time, so cosmologists often use
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megayears (Myr), with I Myr = 10°yr = 3.16 x 103 s. Even longer timescales
call for use of gigayears (Gyr), with 1 Gyr = 10° yr = 3.16 x 10'¢ 5. For example,
the age of the Earth is more conveniently written as 4.57 Gyr than as 1.44 X 10'7s.

In addition to dealing with very large things, cosmology also deals with
very small things. Early in its history, as we shall see, the universe was very
hot and dense, and some interesting particle physics phenomena were occurring.
Consequently, particle physicists have plunged into cosmology, introducing some
terminology and units of their own. For instance, particle physicists tend to mea-
sure energy units in electron volts (eV) instead of joules (J). The conversion factor
between clectron volts and joules is 1eV = 1.60 x 107'? J. The rest energy of an
electron, for instance, is m.c? = 511000eV = 0.511 MeV, and the rest energy of
a proton is m,c® = 938.27MeV = 1836.1m,¢>.

When you stop to think of it, you realize that the units of meters, megaparsecs,
kilograms, solar masses, seconds, and gigayears could only be devised by ten-
fingered Earthlings obsessed with the properties of water. An eighteen-tentacled
silicon-based lifeform from a planet orbiting Betelgeuse would probably devise
a different set of units. A more universal, less culturally biased system of units
is the Planck system, based on the universal constants G, ¢, and A. Combining
the Newtonian gravitational constant, G = 6.67 x 107! m’ kg~' s72, the speed
of light, ¢ = 3.00 x 108 ms~!, and the reduced Planck constant, i = h/Q2m) =
1.05 % 10-3Js = 6.58 x 10710 ¢V s, yields a unique length scale, known as the

Planck length:
Gn\'"?
tp = <—3’> —1.62x 10 m, (1.1)
c
The same constants can be combined to yield the Planck mass,'
Ao\ /2
Mp = (g) =2.18 x 108 ke, (12)
and the Planck time,
Gh\'?
tp = (—5> =539 x 107*%s. (1.3)
e
Using Einstein’s relation between mass and energy, we can also define the Planck
energy,
Ep = Mpc® = 1.96 x 10°J = 1.22 x 10*eV. (1.4)

By bringing the Boltzmann constant, k = 8.62 x 10-3eV K™, into the act, we
can also define the Planck temperature,

Tp = Ep/k = 1.42 x 107 K. (1.5)

! The Planck mass is roughly equal to the mass of a grain of sand a quarter of a millimeter across.
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When distance, mass, time, and temperature are measured in the appropriate
Planck units, thenc = k = h = G = 1. This is convenient for individuals
who have difficulty in remembering the numerical values of physical constants.
However, using Planck units can have potentially confusing side effects. For
instance, many cosmology texts, after noting that c = k = h = G =1 when
Planck units are used, then proceed to omit ¢, k, i, and/or G from all equations.
For instance, Einstein’s celebrated equation, E = mc?, becomes E = m. The
blatant dimensional incorrectness of such an equation is jarring, but it simply
means that the rest energy of an object, measured in units of the Planck energy, is
equal to its mass, measured in units of the Planck mass. In this book, however, 1
will retain all factors of ¢, k, fi, and G, for the sake of clarity.

Here we will deal with distances ranging from the Planck length to 10* Mpc
or s0, a span of some 61 orders of magnitude. Dealing with such a wide range of
length scales requires a stretch of the imagination, to be sure. However, cosmolo-
gists are not permitted to let their imaginations run totally unfettered. Cosmology,
I emphasize strongly, is based ultimately on observation of the universe around
us. Even in ancient times, cosmology was based on observations; unfortunately,
those observations were frequently imperfect and incomplete. Ancient Egyptians,
for instance, looked at the desert plains stretching away from the Nile valley and
the blue sky overhead. Based on their observations, they developed a model of
the universe in which a flat Earth (symbolized by the earth god Geb in Figure 1.2)
was covered by a solid dome (symbolized by the sky goddess Nut). Underneath
the sky dome, the disk of the Sun was carried from east to west by the sun god
Ra. Greek cosmology was based on more precise and sophisticated observations.
Ancient Greek astronomers deduced, from their observations, that the Earth and

Figure 1.2 The ancient Egyptian view of the cosmos: the sky goddess Nut arches over
the earth god Geb, while the sun god Ra travels between them in a reed boat. (Book of
the Dead of Nespakashuty, ca. 1000 BC) [Musée du Louvre, Paris]
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Moon are spherical, that the Sun is much farther from the Earth than the Moon is,
and that the distance from the Earth to the stars is much greater than the Earth’s
diameter. Based on this knowledge, Greek cosmologists devised a “two-sphere”
model of the universe, in which the spherical Earth is surrounded by a much
larger celestial sphere, a spherical shell to which the stars are attached. Between
the Earth and the celestial sphere, in this model, the Sun, Moon, and planets move
on their complicated apparatus of epicycles and deferents.

Although cosmology is ultimately based on observation, sometimes obser-
vations temporarily lag behind theory. During periods when data are lacking,
cosmologists may adopt a new model for aesthetic or philosophical reasons. For
instance, when Copernicus proposed a new Sun-centered model of the universe,
to replace the Earth-centered two-sphere model of the Greeks, he didn’t base
his model on new observational discoveries. Rather, he believed that putting the
Earth in motion around the Sun resulted in a conceptually simpler, more appeal-
ing model of the universe. Direct observational evidence didn’t reveal that the
Earth revolves around the Sun, rather than vice versa, until the discovery of the
aberration of starlight in the year 1728, nearly two centuries after the death of
Copernicus. Foucault didn’t demonstrate the rotation of the Earth, another predic-
tion of the Copernican model, until 1851, over three centuries after the death of
Copernicus. However, although observations sometimes lag behind theory in this
way, every cosmological model that isn’t eventually supported by observational
evidence must remain pure speculation.

The current standard model for the universe is the “Hot Big Bang” model,
which states that the universe has expanded from an initially hot and dense state
to its current relatively cool and tenuous state, and that the expansion is still going
on today. To see why cosmologists have embraced the Hot Big Bang model, let
us turn, in the next chapter, to the fundamental observations on which modern
cosmology is based.




Fundamental Observations

Some of the observations on which modern cosmology is based are highly
complex, requiring elaborate apparatus and sophisticated data analysis. However,
other observations are surprisingly simple. Let’s start with an observation that is
deceptive in its extreme simplicity.

2.1 The Night Sky is Dark

Step outside on a clear, moonless night, far from city lights, and look upward.
You will see a dark sky, with roughly two thousand stars scattered across it. The
fact that the night sky is dark at visible wavelengths, instead of being uniformly
bright with starlight, is known as Olbers’ paradox, after the astronomer Heinrich
Olbers, who wrote a scientific paper on the subject in 1823. As it happens, Olbers
was not the first person to think about Olbers’ paradox. As early as 1576, Thomas
Digges mentioned how strange it is that the night sky is dark, with only a few
pinpoints of light to mark the location of stars."

Why should it be paradoxical that the night sky is dark? Most of us simply
take for granted the fact that daytime is bright and nighttime is dark. The darkness
of the night sky certainly posed no problems to the ancient Egyptians or Greeks,
to whom stars were lights stuck to a dome or sphere. However, the cosmological
model of Copernicus required that the distance to stars be very much larger than
an astronomical unit; otherwise, the parallax of the stars, as the Earth goes around
on its orbit, would be large enough to see with the naked eye. Moreover, since
the Copernican system no longer requires that the stars be attached to a rotating
celestial sphere, the stars can be at different distances from the Sun. These

I The name “Olbers’ paradox” is thus a prime example of what historians of science jokingly call the law
of misonomy: nothing is ever named after the person who really discovers it. The law of misonomy is also
known as “Stigler’s law,” after a statistician who admits that he (of course!) didn’t discover it.
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Figure 2.1 A line of sight through the universe eventually encounters an opaque star.

liberating realizations led Thomas Digges, and other post-Copernican astronomers,
to embrace a model in which stars are large, opaque, glowing spheres like the
Sun, scattered throughout infinite space.

Let’s compute how bright we expect the night sky to be in an infinite universe.
Let 1, be the number density of stars in the universe; averaged over large scales,
this number is n, ~ 10 Mpc™>. Let R, be the typical radius of a star. Although
stars have a range of sizes, from dwarfs to supergiants, we may adopt the Sun
as a typical mid-sized star, with R, ~ Rg = 7.0 x 10°m = 2.3 x 10~'4 Mpc.
Consider looking outward in some direction through the universe. If you draw a
cylinder of radius R, around your line of sight, as shown in Figure 2.1, then if
a star’s center lies within that cylinder, the opaque star will block your view of
more distant objects. If the cylinder’s length is A, then its volume is V = ATR?,
and the average number of stars that have their centers inside the cylinder is

N =nV = n,AnR%. .1)

Since it requires only one star to block your view, the typical distance you will
be able to see before a star blocks your line of sight is the distance A for which
N = 1. From Equation (2.1), this distance is

1
A= ; 2.2
n,R? @2)

For concreteness, if we take i, ~ 10°Mpc™ and 7R2 ~ wR% ~ 102" Mpc?,
then you can see a distance

1

A~ ~ 10" Mpc 2.3
(10° Mpc ) (10-27 Mpc?) P @)

before your line of sight intercepts a star. This is a very large distance; but it is
a finite distance. We therefore conclude that in an infinite universe (or one that
stretches at least 10'® Mpc in all directions), the sky will be completely paved
with stars.
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What does this paving imply for the brightness of the sky? If a star of radius
R, is at a distance r > R,, its angular area, in steradians, will be

TR R?
Q=—==—. 2.4
4rr? 4r? (&)
If the star’s luminosity is L., then its flux measured at a distance r will be
L,
= . 2.5
fus 2.5)

The surface brightness of the star, in watts per square meter of your pupil (or
telescope mirror) per steradian, will then be
f L.

B, = o= n—lé (2.6)
independent of the distance to the star, Thus, the surface brightness of a sky paved
with stars will be equal to the (distance-independent) surface brightness of an
individual star. We therefore conclude that in an infinite universe (or one that
stretches at least 10'® Mpc in all directions), the entire sky, night and day, should
be as dazzlingly bright as the Sun’s disk.

This is utter nonsense. The surface brightness of the Sun is o = 5 X
10-3 watts m—2 arcsec™2. By contrast, the surface brightness of the dark night sky
is T ~ 5 x 10717 watts m~2 arcsec™2. Thus, my estimate of the surface brightness
of the night sky (“It’s the same as the Sun’s”) is wrong by a factor of 100 trillion.

One (or more) of the assumptions that went into my estimate of the sky bri ght-
ness must be wrong. Let’s scrutinize some of the assumptions. One assumption
that I made is that space is transparent over distances of 10'® Mpc. This might not
be true. Heinrich Olbers himself tried to resolve Olbers’ paradox by proposing
that distant stars are hidden from view by interstellar matter that absorbs starlight.
This resolution does not work in the long run, because the interstellar matter is
heated by starlight until it has the same temperature as the surface of a star. At
that point, the interstellar matter emits as much light as it absorbs, and glows as
brightly as the stars themselves.

A second assumption that I made is that the universe is infinitely large. This
might not be true. If the universe extends to a maximum distance rmax <K A, then
only a fraction F ~ rpax /A of the night sky will be covered with stars. This result
will also be found if the universe is infinitely large, but is devoid of stars beyond
a distance rmax-

A third assumption, slightly more subtle than the previous ones, is that the
universe is infinitely old. This might not be true. Because the speed of light is
finite, when we look farther out in space, we are looking farther out in time. Thus,
we see the Sun as it was 8.3 minutes ago, Proxima Centauri as it was 4.2 years
ago, and M31 as it was 2.5 million years ago. If the universe has a finite age,

to < A/c, then we are not yet able to see stars at a distance greater than r ~ clo,
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and only a fraction F ~ cty/A of the night sky will be covered with stars. This
result will also be found if the universe is infinitely old, but has only contained
stars for a finite time fy.

A fourth assumption is that the surface brightness of a star is independent of
distance, as derived in Equation 2.6. This might not be true. The assumption of
constant surface brightness would have seemed totally innocuous to Olbers and
other nineteenth-century astronomers, who assumed that the universe was static.
However, in an expanding universe, the surface brightness of distant light sources
is decreased relative to what you would see in a static universe. (In a contracting
universe, the surface brightness would be increased, which would only make the
problem of a bright night sky even worse.)

Thus, the infinitely large, eternally old, static universe that Thomas Digges
and his successors pictured simply does not hold up to scrutiny. This is a textbook,
not a suspense novel, so I'll tell you right now: the primary resolution to Olbers’
paradox comes from the fact that the universe has a finite age. The stars beyond
some finite distance, called the horizon distance, are invisible to us because their
light hasn’t had time to reach us yet. A particularly amusing bit of cosmological
trivia is that the first person to hint at the correct resolution of Olbers’ paradox
was Edgar Allan Poe.? In his essay “Eureka: A Prose Poem,” completed in 1848,
Poe wrote, “Were the succession of stars endless, then the background of the sky
would present us an [sic] uniform density. .. since there could be absolutely no
point, in all that background, at which would not exist a star. The only mode,
therefore, in which, under such a state of affairs, we could comprehend the voids
which our telescopes find in innumerable directions, would be by supposing the
distance of the invisible background so immense that no ray from it has yet been
able to reach us at all.”

2.2 The Universe is Isotropic and Homogeneous

What does it mean to state that the universe is isotropic and homogeneous? Saying
that the universe is isofropic means that there are no preferred directions in the
universe: it looks the same no matter which way you point your telescope. Saying
that the universe is homogeneous means that there are no preferred locations in
the universe; it looks the same no matter where you set up your telescope. Note
the very important qualifier: the universe is isotropic and homogeneous on large
scales. In this context, “large scales” means that the universe is only isotropic and
homogeneous on scales of roughly 100 Mpc or more.

2 That’s right, the “Nevermore” guy. Poe was an excellent student at the University of Virginia (before he fell
into debt and withdrew). He was then an excellent student at West Point (before he was court-martialed and
expelled).
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(@) (b)

Figure 2.2 (a) A sphere 3 m in diameter, centered on your navel. (b) A sphere 3 AU
in diameter, centered on your navel. (¢) A sphere 3 Mpc in diameter, centered on your
navel. (d) A sphere 200 Mpc in diameter, centered on your navel. Shown is the smoothed
number density of galaxies. The heavy contour is drawn at the mean density; darker
regions represent higher density. [Dekel et al. 1999, ApJ, 522, 1]

The isotropy of the universe is not immediately obvious. In fact, on small
scales, the universe is blatantly anisotropic. Consider, for example, a sphere 3 m
in diameter, centered on your navel (Figure 2.2a). Within this sphere, there is a
preferred direction; it is the direction commonly referred to as “down.” It is easy
to determine the vector pointing down. Just let go of a small dense object. The
object doesn’t hover in midair, and it doesn’t move in a random direction; it falls
down, toward the center of the Earth.

On significantly larger scales, the universe is still anisotropic. Consider, for
example, a sphere 3 AU in diameter, centered on your navel (Figure 2.2b). Within
this sphere, there is a preferred direction; it is the direction pointing toward the
Sun, which is by far the most massive and most luminous object within the sphere.
It is easy to determine the vector pointing toward the Sun. Just step outside on a
sunny day, and point to that really bright disk of light up in the sky.

On still larger scales, the universe is still anisotropic. Consider, for example,
a sphere 3 Mpc in diameter, centered on your navel (Figure 2.2¢). This sphere
contains the Local Group of galaxies, a small cluster of about a hundred galaxies.
By far the most massive and most luminous galaxies in the Local Group are our
own galaxy and M31, which together contribute about 86 percent of the total
luminosity within the 3 Mpc sphere. Thus, within this sphere, our galaxy and
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M31 define a preferred direction. It is fairly easy to determine the vector pointing
from our galaxy to M31. Just step outside on a clear night when the constellation
Andromeda is above the horizon, and point to the fuzzy oval in the middle of the
constellation.

It isn’t until you get to considerably larger scales that the universe can be
considered as isotropic. Consider a sphere 200 Mpc in diameter, centered on
your navel. Figure 2.2d shows a slice through such a sphere, with superclus-
ters of galaxies indicated as dark patches. The Perseus—Pisces supercluster is
on the right, the Hydra—Centaurus supercluster is on the left, and the edge of
the Coma supercluster is just visible at the top of Figure 2.2d. Superclusters are
typically ~ 100 Mpc along their longest dimensions, and are separated by voids
(low density regions) which are typically ~ 100 Mpc across. These are the largest
structures in the universe, it seems; surveys of the universe on still larger scales
don’t find “superduperclusters.”

On small scales, the universe is obviously inhomogeneous, or lumpy, in addi-
tion to being anisotropic. For instance, a sphere 3 m in diameter, centered on your
navel, will have an average density of ~ 100 kg m~3, in round numbers. However,
the average matter density of the universe as a whole is po = 2.7 x 1077 kgm™2.
Thus, on a scale d ~ 3 m, the patch of the universe surrounding you is more than
28 orders of magnitude denser than average.

On significantly larger scales, the universe is still inhomogeneous. A sphere
3 AU in diameter, centered on your navel, has an average density of 4 X
10-5kgm™>; that’s 22 orders of magnitude denser than the average for the
universe.

On still larger scales, the universe is still inhomogeneous. A sphere 3 Mpc
in diameter, centered on your navel, will have an average density of ~3 X
1026 kgm™3, still an order of magnitude denser than the universe as a whole.
It’s only when you contemplate a sphere ~ 100 Mpc in diameter that a sphere
centered on your navel is not overdense compared to the universe as a whole.

Note that homogeneity does not imply isotropy. A sheet of paper printed with
stripes (Figure 2.3 left) is homogeneous on scales larger than the stripe width,
but it is not isotropic. The direction of the stripes provides a preferred direction
by which you can orient yourself. Note also that isotropy around a single point
does not imply homogeneity. A sheet of paper printed with a bullseye (Figure 2.3
right) is isotropic around the center of the bullseye, but it is not homogeneous.
The rings of the bullseye look different far from the center than they look close
to the center. You can tell where you are relative to the center by measuring the
radius of curvature of the nearest ring.

In general, then, saying that something is homogeneous is quite different from
saying it is isotropic. However, modern cosmologists have adopted the Coper-
nican principle, which states “There is nothing special or privileged about our
location in the universe.” The Copernican principle holds true only on large scales
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Figure 2.3 Left: a pattern that is anisotropic, but is homogeneous on scales larger than
the stripe width. Right: a pattern that is isotropic about the origin, but is inhomogeneous.

(of 100 Mpc or more). On smaller scales, your navel obviously is in a special
location. Most spheres 3 m across don’t contain a sentient being; most spheres 3
AU across don’t contain a star; most spheres 3 Mpc across don’t contain a pair of
bright galaxies. However, most spheres over 100 Mpc across do contain roughly
the same pattern of superclusters and voids, statistically speaking. The universe,
on scales of 100 Mpc or more, appears to be isotropic around us. Isotropy around
any point in the universe, such as your navel, combined with the Copernican
principle, implies isotropy around every point in the universe; and isotropy around
every point in the universe does imply homogeneity.

The observed isotropy of the universe on scales 100 Mpc or more, combined
with the assumption of the Copernican principle, leads us to state “The universe
(on large scales) is homogeneous and isotropic.” This statement is known as
the cosmological principle. Although the Copernican principle forbids us to say
“We're number one!”, the cosmological principle permits us to say “We're second

to none!”

2.3 Redshift is Proportional to Distance

When we look at a galaxy at visible wavelengths, we detect primarily the light
from the stars that the galaxy contains. Thus, when we take a galaxy’s spectrum
at visible wavelengths, it typically contains absorption lines created in the stars’
relatively cool upper atmospheres; galaxies with active galactic nuclei will also
show emission lines from the hot gas in their nuclei. Suppose we consider a par-
ticular absorption or emission line whose wavelength, as measured in a laboratory
here on Earth, is Aeyn. The wavelength we measure for the same line in a distant
galaxy’s observed spectrum, Aop, will not, in general, be the same. We say that the
galaxy has a redshift z, given by the formula

}\0 - )“em
PO i Sk .} 2.7)

A‘EITI




2.3 Redshift is Proportional to Distance

Strictly speaking, when z < 0, this quantity is called a blueshift, rather than a
redshift. However, the vast majority of galaxies have z > 0.

The fact that the light from galaxies is generally redshifted to longer wave-
lengths, rather than blueshifted to shorter wavelengths, was not known until the
twentieth century. In 1912, Vesto Slipher at the Lowell Observatory measured the
shift in wavelength of the light from the galaxy M31. He found z = —0.001,
meaning that M31 is one of the few galaxies that exhibit a blueshift rather than a
redshift. Slipher interpreted the shift in wavelength as being due to the Doppler
effect. Since |z] < 1 for M31, he used the classical, nonrelativistic relation for
the Doppler shift, z = v/c, to compute that M31 is moving toward the Earth with
aspeed v = —0.001c = —300kms~".

In the year 1927, the Belgian cosmologist Georges Lemaitre compiled a list of
42 galaxies whose wavelength shift had been measured, mostly by Vesto Slipher.
Of these galaxies, 37 were redshifted, and only 5 were blueshifted. This is a
notable excess of redshifts; by analogy, if you have a fair coin and flip it 42
times, the chance of getting “heads” 37 or more times is P ~ 2 X 10~7. The
average radial velocity of all 42 galaxies in the sample was v = +600kms~'.
Lemaitre pointed out that these relatively high speeds (much higher than the
average speed of stars within our galaxy) could result from an expansion of the
universe. Using an estimated average distance of r = 0.95 Mpc for the galaxies
in his sample, he concluded that the expansion was described by the parameter
K=v/r=625kms™' Mpc™".

Although Lemaitre made an estimate of the average distance to the galaxies in
his sample, finding an accurate distance to an individual galaxy was quite difficult.
The astronomer Edwin Hubble invested a great deal of effort into measuring the
distances to galaxies. By 1929, he had estimated distances for a sample of 20
galaxies whose value of z had been measured. Figure 2.4 shows Hubble’s plot of
redshift (z) versus distance (r) for these galaxies. He noted that the more distant
galaxies had higher redshifts, and fitted the data with the famous linear relation
now known as Hubble’s law:

H
7= —2r, (2.8)
&7

where H, is a constant (now called the Hubble constant). Interpreting the redshifts
as Doppler shifts, Hubble’s law takes the form

v = Hyr. (2.9)

Thus, Lemaitre’s expansion parameter K, if we assume z o r, can be thought of
as the first measurement of the Hubble constant.

The Hubble constant Hy can be found by dividing velocity by distance, so
it is customarily written in the rather baroque units of km s~ Mpc~'. When
Hubble first discovered Hubble’s law, he thought that the numerical value of the
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Figure 2.4 Edwin Hubble’s original plot of the relation between radial velocity (assum-
ing the formula v = ¢z) and distance. [Hubble 1929, PNAS, 15, 168]
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Figure 2.5 A more recent version of Hubble’s plot, showing cz versus distance. In this
case, the galaxy distances have been determined using Cepheid variable stars as standard
candles, as described in Section 6.4. [Freedman ef al. 2001, ApJ, 553, 47]

Hubble constant was Hy ~ 500 km =1 Mpc_l, as shown in Figure 2.4. However,
it turned out that Hubble was severely underestimating the distances to individual
galaxies, just as Lemaitre, who was relying on techniques pioneered by Hubble,
was underestimating the average distance to nearby galaxies.

Figure 2.5 shows a more recent determination of the Hubble constant from
nearby galaxies, using data obtained using the Hubble Space Telescope. Notice
that galaxies with a radial velocity v = ¢z~ 1000 kms~!, which Hubble thought
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were at a distance r ~ 2Mpc, are now more accurately placed at a distance
r ~ 15Mpc. The best current estimate of the Hubble constant, combining the
results from various research techniques, is

Ho =68 +£2kms ™' Mpc™'. (2.10)

This is the value for the Hubble constant that we will use in the remainder of this
book.

Cosmological innocents sometimes exclaim, when first encountering
Hubble’s law, “Surely it must be a violation of the Copernican principle to
have all those distant galaxies moving away from us! It looks as if we are at a
special location in the universe — the point away from which all other galaxies are
fleeing.” In fact, what we see here in our galaxy is exactly what you would expect
to see in a universe that is undergoing homogeneous and isotropic expansion.
We see distant galaxies moving away from us; but observers in any other galaxy
would also see distant galaxies moving away from them.

To see on a more mathematical level what we mean by homogeneous,
isotropic expansion, consider three galaxies at positions 71, 72, and F3. They
define a triangle (Figure 2.6) with sides of length

rip = |1 — 7l 2.11)
ri = |7y — 73 (2.12)
= |7"‘; —7‘1' % (213)

Homogeneous and uniform expansion means that the shape of the triangle is
preserved as the galaxies move away from each other. Maintaining the correct
relative lengths for the sides of the triangle requires an expansion law of the form

rip(t) = a(tyra(to) (2.14)
ra3(t) = a(t)ra(to) (2:15)
r31 () = a(t)r31 (o). (2.16)
2
l23
12 3

31
1

Figure 2.6 A triangle defined by three galaxies in a uniformly expanding universe.
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Here the function a(7) is a scale factor, equal to one at the present moment (1 = fo)
and totally independent of location or direction. The scale factor a(r) tells us how
the expansion (or possibly contraction) of the universe depends on time. At any
time 7, an observer in galaxy 1 will see the other galaxies receding with a speed

dri, . a

vip(t) = = ary(to) = —ri2(0) 2.17)
dt a
dr . a

v () = 2L = arsy (t9) = =rn (0. (2.18)
dt a

An observer in galaxy 2 or galaxy 3 will find the same linear relation between
observed recession speed and distance, with a/a playing the role of the Hubble
constant. Since this argument can be applied to any trio of galaxies, it implies that
in any universe where the distribution of galaxies is undergoing homogeneous,
isotropic expansion, the velocity—distance relation takes the linear form v = Hr,
with H = a/a.

If galaxies are currently moving away from each other, then it implies they
were closer together in the past. Consider a pair of galaxies currently separated
by a distance r, with a velocity v = Hor relative to each other. If there are no
forces acting to accelerate or decelerate their relative motion, then their velocity
is constant, and the time that has elapsed since they were in contact is

fo:-;:—‘: 0 > (219)

independent of the current separation r- The time H, !is referred to as the Hubble
time. For Hy = 68 + 2kms~' Mpc™', the Hubble time is Hy' = 1438 +
0.42 Gyr. If the relative velocities of galaxies have been constant in the past, then
one Hubble time ago, all the galaxies in the universe were crammed together into
a small volume. Thus, the observation of galactic redshifts led naturally to a Big
Bang model for the evolution of the universe. A Big Bang model may be broadly
defined as a model in which the universe expands from an initially highly dense
state to its current low-density state.

The Hubble time of ~ 14.4 Gyr is comparable to the ages computed for the
oldest known stars in the universe. This rough equivalence is reassuring. However,
the age of the universe — that is, the time elapsed since its original highly dense
state — is not necessarily exactly equal to the Hubble time. We know that gravity
exists, and that galaxies contain matter. If gravity working on matter is the only
force at work on large scales, then the attractive force of gravity will act to slow
the expansion. In this case, the universe was expanding more rapidly in the past
than it is now, and the universe is somewhat younger than H, ', On the other hand,
if the energy density of the universe is dominated by a cosmological constant (an
entity we’ll examine in more detail in Chapter 4), then the dominant gravitational
force is repulsive, and the universe may be older than H, L,
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Just as the Hubble time provides a natural time scale for our expanding uni-
verse, the Hubble distance, ¢/Hy = 4380 £ 130 Mpc, provides a natural distance
scale. The age of the universe is to ~ H, ! with the precise age depending on
the expansion history of the universe. Even if a star began shining very early in
the history of the universe, the first light from that star can only have traveled
a distance d ~ cty ~ ¢/Hy, with the precise travel distance depending on the
expansion history of the universe. The finite age of the universe thus provides the
resolution for Olbers’ paradox: the night sky is dark because the light from stars
at a distance much greater than ¢/H, hasn’t had time to reach us.

In an infinite, eternal universe, as we have seen, you could see an average
distance of A ~ 10'8 Mpc before your line of sight encountered an opaque star.
In a young universe where light can travel a maximum distance d ~ c/Hy ~
4000 Mpc, the probability that you see a star along a randomly chosen line of sight
is tiny: it’s of order P ~ d/A ~ 4x 107"%. Thus, instead of seeing a sky Completely
paved with stars, with surface brightness £ ~ Xg ~ 5% 103 watts m~2 arcsec 2,
you see a sky severely underpaved with stars, with an average sur face brightness®
¥ ~ P ~ 2 x 1077 watts m~2 arcsec™ 2. For the night sky to be completely
paved with stars, the universe would have to be over 100 trillion times older than
it is; and you’d have to keep the stars shining during all that time.

Hubble’s law occurs naturally in a Big Bang model for the universe, in
which homogeneous and isotropic expansion causes the density of the universe to
decrease steadily from its initial high value. In a Big Bang model, the properties of
the universe evolve with time; the average density decreases, the mean distance
between galaxies increases, and so forth. However, Hubble’s law can also be
explained by a Steady State model. The Steady State model was first proposed in
the 1940s by Hermann Bondi, Thomas Gold, and Fred Hoyle, who were propo-
nents of the perfect cosmological principle, which states that not only are there
no privileged locations in space, there are no privileged moments in time. Thus,
a Steady State universe is one in which the global properties of the universe, such
as the mean density po and the Hubble constant Hy, remain constant with time.

In a Steady State universe, the velocity—distance relation
dr
— = Hyr (2.20)
dt
can be easily integrated, since Hy is constant with time, to yield an exponential

law:
#(t) oc g™, (2:21)
Note that » — 0 only in the limit # — —o0; a Steady State universe is infinitely

old. If there existed an instant in time at which the universe started expanding

3 This crude back-of-envelope calculation doesn’t exactly match the observed surface brightness of the night
sky, but it’s surprisingly close.
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(as in a Big Bang model), that would be a special moment, in violation of the
assumed “perfect cosmological principle.” The volume of a spherical region of
space, in a Steady State model, increases exponentially with time:

V= 4—;5;»‘ o 3ol (2.22)

However, if the universe is in a steady state, the density of the sphere must remain
constant. To have a constant density of matter within a growing volume, matter
must be continuously created at a rate

Mg = poV = po3HoV. (2.23)

If our own universe, with matter density po ~ 2.7 X 10-2 kg m~—?, happened to
be a Steady State universe, then matter would have to be created at a rate

Mss

— 3Hypo ~ 5.6 x 107¥ kgm™> Gyr . (2.24)

This corresponds to creating roughly one hydrogen atom per cubic kilometer per
year.

During the 1950s and 1960s, the Big Bang and Steady State models battled
for supremacy. Critics of the Steady State model pointed out that the continuous
creation of matter violates mass-energy conservation. Supporters of the Steady
State model pointed out that the continuous creation of matter is no more absurd
than the instantaneous creation of the entire universe in a single “Big Bang”
billions of years ago.* The Steady State model finally fell out of favor when
observational evidence increasingly indicated that the perfect cosmological prin-
ciple is not true. The properties of the universe do, in fact, change with time.
The discovery of the cosmic microwave background, discussed in Section 2.5,1s
commonly regarded as the observation that decisively tipped the scales in favor
of the Big Bang model.

2.4 Different Types of Particles

It doesn’t take a brilliant observer to confirm that the universe contains a variety
of different things: shoes, ships, sealing wax, cabbages, kings, galaxies, and what
have you. From a cosmologist’s viewpoint, though, cabbages and kings are nearly
indistinguishable — the main difference between them is that the mean mass per
king is greater than the mean mass per cabbage. From a cosmological viewpoint,
the most significant difference between the different components of the universe
is that they are made of different elementary particles. The properties of the most
cosmologically important particles are summarized in Table 2.1.

4 The name “Big Bang” was actually coined by Fred Hoyle, a supporter of the Steady State model.
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Table 2.1 Elementary particle properties.

Particle Symbol Rest energy (MeV)  Charge
Proton P 938.27 +1
Neutron n 939.57 0
Electron e~ 0.5110 -1
Neutrino Ve, Vi, Vo <3 x 1077 0
Photon y 0 0
Dark matter ~ ? ? 0

The material objects that surround us in our everyday life are made up of
protons, neutrons, and electrons.® Protons and neutrons are examples of baryons,
where a baryon is defined as a particle made of three quarks. A proton (p) contains
two “up” quarks, each with an electrical charge of +2/3, and a “down” quark,
with charge —1/3. A neutron (1) contains one “up” quark and two “down” quarks. i |
Thus a proton has a net positive charge of +1, while a neutron is electrically '
neutral. Protons and neutrons also differ in their mass — or equivalently, in their

rest energies. The proton mass is m,c* = 938.27MeV, while the neutron mass ‘é
is m,c* = 939.57 MeV, about 0.1% greater. Free neutrons are unstable, decaying b
into protons with a decay time of 7, = 880s, about a quarter of an hour. By lf’

contrast, protons are extremely stable; the lower limit on the decay time of the
proton is 7, > 10**H;"'. Neutrons can be preserved against decay by binding
them into an atomic nucleus with one or more protons.

Electrons (e™) are examples of leptons, a class of elementary particles that are
not made of quarks. The mass of an electron is much smaller than that of a neutron
or proton; the rest energy of an electron is mec> = 0.511 MeV. An electron has
an electric charge equal in magnitude to that of a proton, but opposite in sign.
On large scales, the universe is electrically neutral; the number of electrons is
equal to the number of protons. Since protons outmass electrons by a factor of
1836 to 1, the mass density of electrons is only a small perturbation to the mass
density of protons and neutrons. For this reason, the component of the universe
made up of ions, atoms, and molecules is generally referred to as baryonic matter,
since only the baryons (protons and neutrons) contribute significantly to the mass
density. Protons and neutrons are 800-pound gorillas; electrons are only 7-ounce
bushbabies.

About three-fourths of the baryonic matter in the universe is currently in the
form of ordinary hydrogen, the simplest of all elements. In addition, when we look
at the remainder of the baryonic matter, it is primarily in the form of helium, the
next simplest element. When astronomers look at a wide range of astronomical
objects — stars and interstellar gas clouds, for instance — they find a minimum

5 For that matter, we ourselves are made of protons, neutrons, and electrons.
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helium mass fraction of 24%. The baryonic component of the universe can be
described, to lowest order, as a mix of three parts hydrogen to one part helium,
with only minor contamination by heavier elements.

Another type of lepton, in addition to the electron, is the neutrino (v). The
most poetic summary of the properties of the neutrino was made by John Updike,
in his poem “Cosmic Gall:°

Neutrinos, they are very small.

They have no charge and have no mass
And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,
Like dustmaids down a drafty hall

Or photons through a sheet of glass.

In truth, Updike was using a bit of poetic license here. It is definitely true that
neutrinos have no electric charge. However, it is not true that neutrinos “do not
interact at all”; they actually are able to interact with other particles via the
weak nuclear force. The weak nuclear force, though, is very weak indeed; a
typical neutrino emitted by the Sun would have to pass through a few parsecs
of solid lead before having a 50 percent chance of interacting with a lead atom.
Since neutrinos pass through neutrino detectors with the same facility with which
they pass through the Earth, detecting neutrinos from astronomical sources 18
difficult.

There are three types, or “flavors,” of neutrinos: electron neutrinos (v,), muon
neutrinos (v, ), and tau neutrinos (v, ). What Updike didn’t know in 1960, when
he wrote his poem, is that each flavor of neutrino has a small mass. In addition to
there being three flavor states of neutrino, (v, vy, V), there are also three mass
states of neutrino, (vy,va,v3), with masses ny, n, and mj3. Each of the three
flavor states is a quantum superposition of the three different mass states. The
presence of three neutrino mass states, at least two of which have a non-zero
mass, is known indirectly from the search for neutrino oscillations. An oscilla-
tion is the transmutation of one flavor of neutrino into another. For instance, an
electron neutrino produced by a fusion reaction in the core of the Sun will be
converted into some combination of an electron neutrino, a muon neutrino, and
a tau neutrino as it moves away from the Sun. These oscillations can only occur,
according to the laws of quantum mechanics, if the different mass states have
masses that differ from each other. The oscillations of electron neutrinos from the
Sun are explained if the two first mass states have (m2 —md)c* ~7.5x 107 eV2
The oscillations of muon neutrinos created by cosmic rays striking the Earth’s

6 From TELEPHONE POLES AND OTHER POEMS, by John Updike, ©1958. 1959, 1960, 1961, 1962, 1963
by John Updike. Used by permission of Alfred A. Knopf, an imprint of the Knopf Doubleday Publishing
Group, a division of Penguin Random House LLC. All rights reserved.
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upper atmosphere are most easily explained if (m3 — m3)c* ~ 2.4 x 1073 V™.
Unfortunately, knowing the differences of the squares of the masses doesn’t tell
us the values of the masses themselves. Given m; > 0, there is a lower limit on
the sum of the neutrino masses:

(my +myp + m3)c2 = [m(v,) +m(v,) + m(vy)]e* > 0.057eV. (2.25)

The best upper limit on the sum of the neutrino masses is given by observations
of the large scale structure of the universe, as we shall see in Chapter 11. This
upper limit is

(my + my + my)e* = [m(v,) + m(v,) + m(v;)]c* <0.3eV . (2.26) ‘.g‘

In any case, although John Updike was not strictly correct about neutrinos being
massless, they are constrained to be very much lower in mass than electrons.

A particle which is known to be massless is the photon. Electromagnetic
radiation can be thought of either as a wave or as a stream of particles, called
photons. Light, when regarded as a wave, is characterized by its frequency f or
its wavelength A = c/f. When light is regarded as a stream of photons, each
photon is characterized by its energy, E, = hf, where h = 27/ is the Planck
constant. Photons of a wide range of energy, from radio to gamma rays, pervade
the universe. Unlike neutrinos, photons interact readily with electrons, protons,
and neutrons. For instance, photons can ionize an atom by kicking an electron out
of its orbit, a process known as phoroionization. Higher-energy photons can break
an atomic nucleus apart, a process known as photodissociation.

Photons, in general, are easily created. One way to make photons is to take a
dense, opaque object — such as the filament of an incandescent lightbulb — and heat
it up. If an object is opaque, then the protons, neutrons, electrons, and photons
that it contains frequently interact, and attain thermal equilibrium; that is, they all
have the same temperature 7. The density of photons in the object, as a function
of photon energy, will depend only on 7' It doesn’t matter whether the system is
a tungsten filament, an ingot of steel, or a sphere of ionized hydrogen and helium.
The energy density of photons in the frequency range f — f + df is given by the
blackbody function

e ——————

8mh F2df
¢ exp(hf/kT) — 1’

e(Ndf = (2.27)
illustrated in Figure 2.7.

The peak in the blackbody function occurs at Afpeac ~ 2.82kT. Integrated
over all frequencies, Equation 2.27 yields a total energy density for blackbody
radiation of

g, = aT? (2.28)
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Figure 2.7 The energy density of blackbody radiation, expressed as a function of

frequency f.

where
n? K
g T 7566 % 1070 TmT KT (2.29)
15 pic?
Since the energy of a photon is E, = hf, the number density of photons in the
frequency range f — f +df is, from Equation 2.27,
e(Hdf 8w Fedf
FP = e~ e 1 2.30
n(f)df = =5 = 3 exp(hf [KT) — 1 230)

Integrated over all frequencies, the number density of photons in blackbody radi-
ation is

n, = BT°, (2.31)

where

3
= %4—0;11—’;’ —2.029 x 10'm K™, (2.32)
wd B

Division of Equation 2.28 by Equation 2.31 yields a mean photon energy Emean =
Ifmean = 2 70kT, close to the peak in the spectrum. You have a temperature Tyou =
310 K, assuming you are not running a fever, and you radiate an approximate
blackbody spectrum, with a mean photon energy Emean ~ 0.072 eV, correspond-
ing to a wavelength A ~ 17 x 1075m & 17000 nm, in the mid-infrared. By
contrast, the Sun produces an approximate blackbody spectrum with a tempera-
ture T ~ 5800 K. This implies a mean photon energy Epean =~ 1.3€V, corres-
ponding to A ~ 9.0 x 1077 m ~ 900 nm, in the near infrared. Note, however, that
although the mean photon energy in a blackbody spectrum is 2.70kT, Figure 2.7
shows us that there is a long exponential tail to higher photon energies. A large




2.5 Cosmic Microwave Background

S S

23

fraction of the Sun’s output is at wavelengths of 400 — 700 nm, which our eyes
are equipped to detect.

A more mysterious component of the universe is dark matter. When observa-
tional astronomers refer to dark matter, they often mean any massive component
of the universe that is too dim to be detected readily using current technology.
Theoretical astrophysicists often use a more stringent definition of dark matter
than do observers, defining dark matter as any massive component of the universe
which doesn’t emit, absorb, or scatter light at all.” If neutrinos have mass, for
instance, as the neutrino oscillation results indicate, they qualify as dark mat-
ter. In some extensions to the Standard Model of particle physics, there exist
massive particles that interact, like neutrinos, only through the weak nuclear force
and through gravity. These particles, which have not yet been detected in the
laboratory, are generically referred to as weakly interacting massive particles, or
WIMPs.

In this book, we will generally adopt the broader definition of dark matter as
something which is too dim for us to see, even with our best available technology.
Detecting dark matter is, naturally, difficult. The standard method of detecting
dark matter is by measuring its gravitational effect on luminous matter, just as the
planet Neptune was first detected by its gravitational effect on the planet Uranus.
Although Neptune no longer qualifies as dark matter, observations of the motions
of stars within galaxies and of galaxies within clusters indicate that a significant
amount of dark matter is in the universe. Exactly how much there is, and what it’s
made of, is a topic of great interest to cosmologists.

2.5 Cosmic Microwave Background

The discovery of the cosmic microwave background (CMB) by Arno Penzias and
Robert Wilson in 1965 has entered cosmological folklore. Using a microwave
antenna at Bell Labs, they found an isotropic background of microwave radiation.
More recently, space-based experiments have revealed that the cosmic microwave
background is exquisitely well fitted by a blackbody spectrum (Equation 2.27)
with a temperature

To = 2.7255 £ 0.0006 K. (2.33)
The energy density of the CMB is, from Equation 2.28,
g, =4.175 x 107*Jm™* = 0.2606 MeV m™>. (2.34)

7 Using this definition, an alternate name for dark matter might be “transparent matter” or “invisible matter.”
However, the name “dark matter” is the commonly adopted term.
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The number density of CMB photons is, from Equation 2.31,
n, =4.107 x 10°m™. (2.35)

Thus, there are about 411 CMB photons per cubic centimeter of the universe at
the present day. The mean energy of CMB photons, however, is quite low, only

Epnean = 6.344 X 10*eV. (2.36)

This is too low in energy (o photoionize an atom, much less photodissociate
a nucleus. The mean CMB photon energy corresponds to a wavelength of
2 millimeters, in the microwave region of the electromagnetic spectrum — hence
the name ‘“‘cosmic microwave background.”

The existence of the CMB is a very important cosmological clue. In particu-
lar, it is the clue that caused the Big Bang model for the universe to be favored over
the Steady State model. In a Steady State universe, the existence of blackbody
radiation at 2.7255K is not easily explained. In a Big Bang universe, however,
a cosmic background radiation arises naturally if the universe was initially very
hot as well as very dense. If mass is conserved in an expanding universe, then
in the past the universe was denser than it is now. Assume that the early dense
universe was very hot (T > 10*K, or kT > leV). At such high temperatures,
the baryonic matter in the universe was completely ionized, and the free elec-
trons rendered the universe opaque. A dense, hot, opaque body, as described in
Section 2.4, produces blackbody radiation. So, the early hot dense universe was
full of photons, banging off the electrons like balls in a pinball machine, with
a spectrum typical of a blackbody (Equation 2.27). However, as the universe
expanded, it cooled. Eventually, the temperature became sufficiently low that
ions and electrons combined to form neutral atoms. When the universe no longer
contained a significant number of free electrons, the blackbody photons started
streaming freely through the universe, without further scattering off free electrons.

The blackbody radiation that fills the universe today can be explained as
a relic of the time when the universe was sufficiently hot and dense to be
opaque. However, at the time the universe became transparent, its temperature
was 2970 K. The temperature of the CMB today is 2.7255K, a factor of 1090
Jower. The drop in temperature of the blackbody radiation is a direct consequence
of the expansion of the universe. Consider a region of volume V' that expands
at the same rate as the universe, sO that V o a(t)®. The blackbody radiation in
the volume can be thought of as a photon gas with energy density &, = aT ¥,
Moreover, since the photons in the volume have momentum as well as energy, the
photon gas has a pressure; the pressure of a photon gas is P, = &,/3. The photon
gas within our imaginary box follows the laws of thermodynamics; in particular,
the boxful of photons obeys the first law

dQ = dE + PdV, (2:37)
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where dQ is the amount of heat flowing into or out of the photon gas in the volume
V, dE is the change in the internal energy, P is the pressure, and dV is the change
in volume of the box. Since, in a homogeneous universe, there is no net flow of
heat (everything is the same temperature, after all), dQ = 0. Thus, the first law of
thermodynamics, applied to an expanding homogeneous universe, is

dE dav

— = =P{t)—: 2.38
7 (1) 7 (2.38)
Since, for the photons of the CMB, E = ¢,V = o«T*V and P = P, = aT*/3,
Equation 2.38 can be rewritten in the form

s Ly 4 Y Sl (2.39)
o e — | = =z . J
dt dt 39 A

or

ldr 14V (2.40) i
Tdt  3Vdt’ ‘ uw
However, since V o a(f)? as the box expands, this means that the rate of change (3
of the photons’ temperature is related to the rate of expansion of the universe by ‘E
|

the relation
d d
—(nT) = ——(na). 2.41
dt(n ) a,t(na) (2.41)

This implies the simple relation T(f) o¢ a(t)™'; the temperature of the cosmic
background radiation has dropped by a factor of 1090 since the universe became
transparent, because the scale factor a(f) has increased by a factor of 1090 since
then. What we now see as a cosmic microwave background was once, at the
time the universe became transparent, a cosmic near infrared background, with a
temperature comparable to that of a relatively cool star like Proxima Centauri.

The evidence cited so far can all be explained within the framework of a Hor
Big Bang model, in which the universe was originally very hot and very dense,
and since then has been expanding and cooling. The remainder of this book will
be devoted to working out the details of the Hot Big Bang model that best fits the
universe in which we live.

Exercises

2.1 Assume you are a perfect blackbody at a temperature of 7 = 310 K. What
is the rate, in watts, at which you radiate energy? (For the purposes of this
problem, you may assume you are spherical.)

2.2 Since you are made mostly of water, you are very efficient at absorbing

microwave photons. If you were in intergalactic space, how many CMB
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25

2.6

photons would you absorb per second? (The assumption that you are spher-
ical will be useful.) What is the rate, in watts, at which you would absorb
radiative energy from the CMB?
Suppose that intergalactic space pirates toss you out the airlock of your
spacecraft without a spacesuit. Combining the results of the two previous
questions, at what rate would your temperature change? (Assume your heat
capacity is that of pure water, C = 42007 kg™ K~'.) Would you be most
worried about overheating, freezing, or asphyxiating?
A hypothesis once used to explain the Hubble relation is the “tired light
hypothesis.” The tired light hypothesis states that the universe is not expand-
ing, but that photons simply lose energy as they move through space (by
some unexplained means), with the energy loss per unit distance being given
by the law
dE
; s
where k is a constant. Show that this hypothesis gives a distance-redshift
relation that is linear in the limit z < 1. What must the value of k be in
order to yield a Hubble constant of Hy = 68 kms™! Mpc™!?
Consider blackbody radiation at a temperature T. Show that for an energy
threshold Eo 3> kT, the fraction of the blackbody photons that have energy

hf > Eg is

hf > E o\ E

nf > £ .42 (—") exp (——‘1). (2.43)
1y kT

~kE (2.42)

The cosmic background radiation is currently called the “cosmic microwave
background.” However, photons with A < 1mm actually lie in the far
infrared range of the electromagnetic spectrum. It’s time for truth in adver-
tising: what fraction of the photons in today’s “cosmic microwave back-
ground” are actually far infrared photons?

Show that for an energy threshold Eq < kT, the fraction of blackbody
photons that have energy hf < Ey1s

hf <E Eo\
m ~ 021 (_0> ) (2.44)
1y kT

Microwave (and far infrared) photons with a wavelength A < 3cm are
strongly absorbed by H,O and O, molecules. What fraction of the photons
in today’s cosmic microwave background have A > 3cm, and thus are
capable of passing through the Earth’s atmosphere and being detected on
the ground?




