Homework 2

Due January 30 at 2pm in class

Please show all work, writing solutions/explanations clearly, or no credit will be given. You are encouraged to work together, but everyone must turn in independent solutions: do not copy from others or from any other sources.

1. A nonrelativistic charged particle moves from a region where the magnetic field strength is B to a region were the field strength has a larger value B_{max} . The distance between these two regions is L, where $L \gg r_c$ and r_c is the cyclotron radius of the orbit of the electron. Write an expression for the minimum value of the initial pitch angle α such that the particle is reflected from the region of B_{max} .

- 2. In the hot phase of the interstellar gas, the gas is a fully ionized plasma with $T = 3 \times 10^5$ K, $n_e = n_p = 0.003$ cm⁻³, and $B = 3 \times 10^{-6}$ G. Calculate:
 - (a) the Debye length.
 - (b) the average Coulomb mean free path of electrons or ions.
 - (c) the average electron cyclotron radius.
 - (d) the average proton cyclotron radius.
 - (e) the average electron cyclotron frequency ω_c .

- 3. Tycho's supernova exploded in 1572 AD as seen from Earth. The supernova has produced a blast wave in which the surrounding interstellar gas (with an average density of 1 atom/cm³) was heated to a temperature of 5×10^7 K. Assume the heated gas is fully ionized hydrogen. Estimate whether there has been sufficient time for:
 - (a) the electrons to develop a Maxwell–Boltzmann distribution?
 - (b) the protons to develop a Maxwell–Boltzmann distribution?
 - (c) the electrons and protons to come into equipartition, $T_p = T_e$?
- 4. A star or planet has a magnetic field which is reasonably well represented as a magnetic dipole field, with a magnetic dipole moment of μ . Assume the field is stationary. Assume the dipole μ can be treated as if it were located at the center of the star or planet. Let r be the radius from the center of the star or planet, and let θ be the co-latitude, the angle measured down from the axis of the dipole.
 - (a) Write down an expression for $\vec{B}(r,\theta)$, the magnetic field as a function of r and θ .
 - (b) What is the shape of a magnetic field line (give r vs. θ for a line)?

