Review of Black Holes

Non-Rotating Black Holes
Schwarzschild Metric:

$$
(d \tau)^{2}=\left(1-\frac{2 G M}{c^{2} r}\right)(d t)^{2}-\left(1-\frac{2 G M}{c^{2} r}\right)^{-1} \frac{(d r)^{2}}{c^{2}}-\frac{r^{2}}{c^{2}}\left[(d \theta)^{2}+\sin ^{2} \theta(d \phi)^{2}\right]
$$

Singularity at $r=0$. Event Horizon at:

$$
R_{\mathrm{sch}}=\frac{2 G M}{c^{2}} \approx 3\left(\frac{M}{M_{\odot}}\right) \mathrm{km}
$$

Gravitational Time Dilation:

$$
d t=\left(1-\frac{R_{\mathrm{sch}}}{r}\right)^{-1 / 2} d \tau \rightarrow \infty \quad \text { as } \quad r \rightarrow R_{\mathrm{sch}}
$$

Gravitational Redshift:

$$
1+z_{\mathrm{grav}} \equiv \frac{\lambda_{\mathrm{obs}}}{\lambda_{\mathrm{em}}}=\left(1-\frac{R_{\mathrm{sch}}}{r}\right)^{-1 / 2} \rightarrow \infty \quad \text { as } \quad r \rightarrow R_{\mathrm{sch}}
$$

Not singular at $R_{\text {sch }}$. Can find coordinate transformation which removes singularity. Example is Kruskal Coordinates:

$$
\begin{aligned}
u & =\left(\frac{r}{R_{\text {sch }}}-1\right)^{1 / 2} \exp \left(\frac{r}{2 R_{\text {sch }}}\right) \cosh \left(\frac{c t}{2 R_{\text {sch }}}\right) \\
v & =\left(\frac{r}{R_{\text {sch }}}-1\right)^{1 / 2} \exp \left(\frac{r}{2 R_{\text {sch }}}\right) \sinh \left(\frac{c t}{2 R_{\text {sch }}}\right)
\end{aligned}
$$

Motions of particles with rest mass m: Energy E and angular momentum L conserved. Effective Potential: Newtonian: $V_{\text {eff }}=-G M / r+L^{2} /\left(2 m r^{2}\right)$, with $E=(1 / 2) m v_{r}^{2}+V_{\text {eff }} \geq V_{\text {eff }}$. For $L>0$, motion always avoids $r=0$.

Schwarzschild Effective Potential: $E=\sqrt{m^{2} c^{2} v_{r}^{2}+V_{\text {eff }}^{2}} \geq V_{\text {eff }}$, with $v_{r}=d r / d \tau$ and

$$
V_{\mathrm{eff}}=m c^{2} \sqrt{\left(1-\frac{2 G M}{c^{2} r}\right)\left(1+\frac{L^{2}}{m^{2} c^{2} r^{2}}\right)}=m c^{2} \sqrt{\left(1-\frac{R_{\mathrm{sch}}}{r}\right)\left(1+\frac{L^{2}}{m^{2} c^{2} r^{2}}\right)}
$$

Last stable circular orbit at

$$
R_{\mathrm{lso}}=\frac{6 G M}{c^{2}}=3 R_{\mathrm{sch}} .
$$

Motions of photons: Replace L with impact parameter b. Conservation of energy requires that that $1 / b^{2} \geq V_{\text {phot }}$, where

$$
V_{\mathrm{phot}}=\frac{1}{r^{2}}\left(1-\frac{2 G M}{c^{2} r}\right)=\frac{1}{r^{2}}\left(1-\frac{R_{\mathrm{sch}}}{r}\right)
$$

Unstable circular orbit at $r=3 G M / c^{2}=(3 / 2) R_{\text {sch }}$.

Rotating Black Holes

Kerr Metric:

$$
\begin{aligned}
(d \tau)^{2}=(1- & \left.\frac{2 G M r}{c^{2} \Sigma}\right)(d t)^{2}+\frac{4 G M a r \sin ^{2} \theta}{c^{3} \Sigma}(d t)(d \phi)-\frac{\Sigma}{\Delta} \frac{(d r)^{2}}{c^{2}}-\frac{\Sigma}{c^{2}}(d \theta)^{2} \\
& -\left(r^{2}+a^{2}+\frac{2 G M a^{2} r \sin ^{2} \theta}{c^{2} \Sigma}\right) \frac{\sin ^{2} \theta}{c^{2}}(d \phi)^{2},
\end{aligned}
$$

where

$$
a \equiv \frac{J}{M c}(\text { units length }) \quad \Delta \equiv r^{2}-2 G M r / c^{2}+a^{2} \quad \Sigma \equiv r^{2}+a^{2} \cos ^{2} \theta
$$

There is no solution if $a \geq G M / c^{2}$.
Event Horizon at larger root of $\Delta=0$:

$$
R_{\mathrm{sch}}=\frac{G M}{c^{2}}+\sqrt{\left(\frac{G M}{c^{2}}\right)^{2}-a^{2}}
$$

Static Limit or Ergosphere at larger root where $g_{t t}=0$ at

$$
R_{\text {static }}=\frac{G M}{c^{2}}+\sqrt{\left(\frac{G M}{c^{2}}\right)^{2}-a^{2} \cos ^{2} \theta}
$$

