Review of Lorentz Transformations

Lorentz Transformations: Consider two inertial frames (t, \vec{x}) and (t', \vec{x}') . The primed frame moves at a speed v along the z-axis relative to the unprimed frame. Assume that initially t = t' = 0 and that the two coordinate frames coincide at t = 0. Then, the Lorentz transformation between the two frames is:

$$\begin{array}{lll} z' &=& \gamma \left(z - vt \right) \\ x' &=& x \\ y' &=& y \\ t' &=& \gamma \left(t - \frac{vz}{c^2} \right) \end{array}$$

where the Lorentz factor γ is defined as

$$\gamma \equiv \left[1 - \left(\frac{v}{c}\right)^2\right]^{-1/2} \,.$$

Similar transformation apply to all other 4-vectors, including the energy-momentum 4-vector $p^{\mu} \equiv (E, \vec{p})$.

Energy and Momentum: The total energy of a particle moving at velocity v is

$$E = \gamma m c^2$$
,

where m is the rest mass. The kinetic energy is given by

$$K.E. = T = (\gamma - 1)mc^2 \approx \begin{cases} \frac{1}{2}mv^2 & v \ll c\\ \gamma mc^2 & \gamma \gg 1 \end{cases}$$

The magnitude of the momentum is given by

$$p = \gamma m v \approx \begin{cases} m v & v \ll c \\ E/c & \gamma \gg 1 \end{cases}$$

Doppler Shift: The wave 4-vector of light $k^{\mu} \equiv (\omega, \vec{k})$ also transforms similarly. Here, $k \equiv 2\pi/\lambda$ is the wavenumber, and $\omega = 2\pi\nu$ is the angular frequency, where λ is the wavelength and ν is the frequency in Hz. The transformation is:

$$k'_{z} = \gamma \left(k_{z} - \frac{v\omega}{c^{2}} \right)$$

$$k'_{x} = k_{x}$$

$$k'_{y} = k_{y}$$

$$\omega' = \gamma \left(\omega - vk_{z} \right).$$

One can also write the Doppler shift as

$$\begin{aligned} \omega' &= \gamma \omega \left(1 - \frac{v}{c} \cos \theta \right) \\ &= \omega / \left[\gamma \left(1 + \frac{v}{c} \cos \theta' \right) \right] \end{aligned}$$

where θ is the angle between \vec{k} and \vec{v} is the original frame (t, \vec{x}) and θ' is the angle between $\vec{k'}$ and \vec{v} is the transformed frame $(t', \vec{x'})$.

Electromagnetic Fields: Let \vec{E}_{\parallel} and \vec{B}_{\parallel} be the components of the electric and magnetic fields parallel to \vec{v} , and let \vec{E}_{\perp} and \vec{B}_{\perp} be the perpendicular components. The fields transform as

$$\begin{aligned} \vec{E}'_{\parallel} &= \vec{E}_{\parallel} \\ \vec{B}'_{\parallel} &= \vec{B}_{\parallel} \\ \vec{E}'_{\perp} &= \gamma \left(\vec{E}_{\perp} + \frac{\vec{v} \times \vec{B}}{c} \right) \\ \vec{B}'_{\perp} &= \gamma \left(\vec{B}_{\perp} - \frac{\vec{v} \times \vec{E}}{c} \right) \end{aligned}$$