Review of Lorentz Transformations

Lorentz Transformations: Consider two inertial frames (t, \vec{x}) and $\left(t^{\prime}, \vec{x}^{\prime}\right)$. The primed frame moves at a speed v along the z-axis relative to the unprimed frame. Assume that initially $t=t^{\prime}=0$ and that the two coordinate frames coincide at $t=0$. Then, the Lorentz transformation between the two frames is:

$$
\begin{aligned}
z^{\prime} & =\gamma(z-v t) \\
x^{\prime} & =x \\
y^{\prime} & =y \\
t^{\prime} & =\gamma\left(t-\frac{v z}{c^{2}}\right)
\end{aligned}
$$

where the Lorentz factor γ is defined as

$$
\gamma \equiv\left[1-\left(\frac{v}{c}\right)^{2}\right]^{-1 / 2}
$$

Similar transformation apply to all other 4 -vectors, including the energy-momentum 4 -vector $p^{\mu} \equiv$ (E, \vec{p}).

Energy and Momentum: The total energy of a particle moving at velocity v is

$$
E=\gamma m c^{2}
$$

where m is the rest mass. The kinetic energy is given by

$$
K . E .=T=(\gamma-1) m c^{2} \approx \begin{cases}\frac{1}{2} m v^{2} & v \ll c \\ \gamma m c^{2} & \gamma \gg 1\end{cases}
$$

The magnitude of the momentum is given by

$$
p=\gamma m v \approx \begin{cases}m v & v \ll c \\ E / c & \gamma \gg 1\end{cases}
$$

Doppler Shift: The wave 4 -vector of light $k^{\mu} \equiv(\omega, \vec{k})$ also transforms similarly. Here, $k \equiv 2 \pi / \lambda$ is the wavenumber, and $\omega=2 \pi \nu$ is the angular frequency, where λ is the wavelength and ν is the frequency in Hz . The transformation is:

$$
\begin{aligned}
k_{z}^{\prime} & =\gamma\left(k_{z}-\frac{v \omega}{c^{2}}\right) \\
k_{x}^{\prime} & =k_{x} \\
k_{y}^{\prime} & =k_{y} \\
\omega^{\prime} & =\gamma\left(\omega-v k_{z}\right) .
\end{aligned}
$$

One can also write the Doppler shift as

$$
\begin{aligned}
\omega^{\prime} & =\gamma \omega\left(1-\frac{v}{c} \cos \theta\right) \\
& =\omega /\left[\gamma\left(1+\frac{v}{c} \cos \theta^{\prime}\right)\right]
\end{aligned}
$$

where θ is the angle between \vec{k} and \vec{v} is the original frame (t, \vec{x}) and θ^{\prime} is the angle between \vec{k}^{\prime} and \vec{v} is the transformed frame $\left(t^{\prime}, \vec{x}^{\prime}\right)$.

Electromagnetic Fields: Let $\vec{E}_{\|}$and $\vec{B}_{\|}$be the components of the electric and magnetic fields parallel to \vec{v}, and let \vec{E}_{\perp} and \vec{B}_{\perp} be the perpendicular components. The fields transform as

$$
\begin{aligned}
\vec{E}_{\|}^{\prime} & =\vec{E}_{\|} \\
\vec{B}_{\|}^{\prime} & =\vec{B}_{\|} \\
\vec{E}_{\perp}^{\prime} & =\gamma\left(\vec{E}_{\perp}+\frac{\vec{v} \times \vec{B}}{c}\right) \\
\vec{B}_{\perp}^{\prime} & =\gamma\left(\vec{B}_{\perp}-\frac{\vec{v} \times \vec{E}}{c}\right)
\end{aligned}
$$

