Homework 1

Due date: Jan 28, 2019 (Mon, in class). No late homework.

1. (20 pts) Intensity per Frequency Interval vs Intensity per Wavelength Interval
(a) If I_{ν} is the intensity per unit frequency interval and I_{λ} is the intensity per unit wavelength interval, show that $\nu I_{\nu}=\lambda I_{\lambda}$.
(b) Apply the above result to the blackbody radiation - use $B_{\nu}(T)$ we derived in class to derive $B_{\lambda}(T)$.
2. (20 pts) Inverse Square Law for an Isotropic Source

In Chapter 1.3 of Rybicki\&Lightman, it is proved that the flux from a uniformly bright sphere (i.e., $I=$ constant) follows the inverse square law. In fact, in the more general case of an isotropic source even with $I \neq$ constant, the flux also follows the inverse square law. A proof based on the energy conservation is given in Chapter 1.2 of Rybicki\&Lightman. Now prove it by starting from the intensity integration. Similar to that in Chapter $1.3, F=\int I \cos \theta d \Omega=\int_{0}^{2 \pi} d \phi \int_{0}^{\theta_{c}} I(\theta) \sin \theta \cos \theta d \theta$ with $\theta_{c}=\sin ^{-1}(R / r)$, and in this case $I(\theta)$ is not necessarily a constant. Finish the proof. (Hint: at any point of the surface of the sphere, I is only a function of $\alpha, I=I(\alpha)$, where α is the angle with respect to the radial direction. See the plot below.)

3. (60 pts) Radiative Transfer in a Uniform Sphere and Photon Escape Probability

Consider a sphere of radius R with uniform and isotropic emission coefficient j_{ν} and absorption coefficient α_{ν}. Define the optical depth τ_{R} across the radius as the optical radius of the system. There is no external radiation field, i.e., all the radiation in this problem comes from the sphere.

(a) Express τ_{R} in terms of R and the relevant coefficient.
(b) At the surface of the sphere, what is the specific intensity $I_{\nu}(R, \theta)$ at an angle θ with respect to the radial direction?
(c) At any point of the surface, what is the flux F_{ν} ?
(d) What is the luminosity L_{ν} that comes out of the sphere?
(e) What is the net momentum flux p_{ν} at any point of the surface?
(f) If there is no absorption, what would be the flux $F_{\nu, 0}$ at the surface?
(g) The photon escape probability $P_{\text {esc }}$ is defined as the ratio $F_{\nu} / F_{\nu, 0}$. Write down the expression of $P_{\text {esc }}$ in terms of τ_{R} and show that it is of the order of $1 / \tau_{R}$ for $\tau_{R} \gg 1$.
(h) At radius $r<R$, with the corresponding optical depth across r denoted as τ, what is the specific intensity $I_{\nu}(r, \theta)$ at an angle θ with respect to the radial direction?

