Homework 1

Due date: Jan 28, 2019 (Mon, in class). No late homework.

1. (20 pts) Intensity per Frequency Interval vs Intensity per Wavelength Interval

- (a) If I_{ν} is the intensity per unit frequency interval and I_{λ} is the intensity per unit wavelength interval, show that $\nu I_{\nu} = \lambda I_{\lambda}$.
- (b) Apply the above result to the blackbody radiation use $B_{\nu}(T)$ we derived in class to derive $B_{\lambda}(T)$.
- 2. (20 pts) Inverse Square Law for an Isotropic Source

In Chapter 1.3 of Rybicki&Lightman, it is proved that the flux from a uniformly bright sphere (i.e., I = constant) follows the inverse square law. In fact, in the more general case of an isotropic source even with $I \neq constant$, the flux also follows the inverse square law. A proof based on the energy conservation is given in Chapter 1.2 of Rybicki&Lightman. Now prove it by starting from the intensity integration. Similar to that in Chapter 1.3, $F = \int I \cos \theta d\Omega = \int_0^{2\pi} d\phi \int_0^{\theta_c} I(\theta) \sin \theta \cos \theta d\theta$ with $\theta_c = \sin^{-1}(R/r)$, and in this case $I(\theta)$ is not necessarily a constant. Finish the proof. (Hint: at any point of the surface of the sphere, I is only a function of α , $I = I(\alpha)$, where α is the angle with respect to the radial direction. See the plot below.)

3. (60 pts) Radiative Transfer in a Uniform Sphere and Photon Escape Probability

Consider a sphere of radius R with uniform and isotropic emission coefficient j_{ν} and absorption coefficient α_{ν} . Define the optical depth τ_R across the radius as the optical radius of the system. There is no external radiation field, i.e., all the radiation in this problem comes from the sphere.

- (a) Express τ_R in terms of R and the relevant coefficient.
- (b) At the surface of the sphere, what is the specific intensity $I_{\nu}(R,\theta)$ at an angle θ with respect to the radial direction?
- (c) At any point of the surface, what is the flux F_{ν} ?
- (d) What is the luminosity L_{ν} that comes out of the sphere?
- (e) What is the net momentum flux p_{ν} at any point of the surface?
- (f) If there is no absorption, what would be the flux $F_{\nu,0}$ at the surface?
- (g) The photon escape probability $P_{\rm esc}$ is defined as the ratio $F_{\nu}/F_{\nu,0}$. Write down the expression of $P_{\rm esc}$ in terms of τ_R and show that it is of the order of $1/\tau_R$ for $\tau_R \gg 1$.
- (h) At radius r < R, with the corresponding optical depth across r denoted as τ , what is the specific intensity $I_{\nu}(r,\theta)$ at an angle θ with respect to the radial direction?