Homework 2

Due date: Feb 11, 2019 (Mon, at class time). No late homework.

1. (40 pts) Stokes Parameters

Two waves propagating along the z-axis are superposed. One wave is linearly polarized along the x-axis and the other is right-hand circularly polarized. The intensity of the linearly polarized wave is half of that of the circularly polarized one.

- (a) If the two waves are monochromatic with the same frequency and there is a phase difference ϕ between the electric field of the linearly polarized wave and the *x*-component of the electric field of the circularly polarized one, find the Stokes parameters for the superposed wave. What is the degree of polarization of the superposed wave?
- (b) If the two waves are instead quasi-monochromatic and independent, find the Stokes parameters for the superposed wave and decompose them into a completely polarized and a completely unpolarized component. What is the degree of polarization of the superposed wave?
- 2. (50 pts) Retarded Potential of a Uniformly Moving Charge

A particle of charge q is moving on the z-axis towards $+\hat{z}$ direction with a constant velocity u. Suppose that the particle passes z = 0 at t = 0. Consider a field point **r** with distance $r = |\mathbf{r}|$ to the origin and angle θ between **r** and the $+\hat{z}$ direction. In the following, we will consider the scalar potential $\phi(\mathbf{r}, t) = \phi(r, \theta, t)$ at t = 0.

- (a) If the field point is in front of the particle, i.e., $\theta = 0$, what is the corresponding retarded time t_{ret} for t = 0? What is the retarded position \mathbf{r}' of the particle? What is the distance Rfrom the field point to the particle's retarded position? What is the $\kappa = 1 - \mathbf{n} \cdot \boldsymbol{\beta}$ factor in the retarded potential? What is the retarded potential $\phi(r, \theta = 0, t = 0)$?
- (b) Repeat the calculations in (a) for $\theta = \pi$, i.e., the field point is behind the particle.
- (c) Repeat the calculations in (a) for $\theta = \pi/2$, i.e., the field point is beside the particle.
- (d) More generally, compute the retarded time t_{ret} for the field point (r, θ) at t = 0. Then compute the retarded potential $\phi(r, \theta, t = 0)$. Does there exist a forward-backward symmetry such that $\phi(r, \pi - \theta, t = 0) = \phi(r, \theta, t = 0)$?

Note that your results should be expressed in terms of q, r, θ , and $\beta = u/c$.

3. (10 pts) An electron is moving along a trajectory $\mathbf{r}_0(t)$. At a field point \mathbf{r} and time t, is it possible to have two values of retarded time t_{ret} corresponding to two different positions on the electron's trajectory? If your answer is "yes", please give a concrete example, i.e., the form of $\mathbf{r}_0(t)$ and the situation for the two values of t_{ret} . If your answer is "no", please give your reasoning and proof.