

ASTR/PHYS 2500: Foundations Astronomy

Week 10: ISM & Stellar Remnants

HW8 due Thursday

Read Ch. 16.1-2, 18

Interstellar Medium (ISM)

All the diffuse stuff in b/t stars and other compact objects in the MW

Neutral H (21cm; radio)

Balmer line n=3->2 (656.3 nm)

CO (2.6 mm; microwave)

Stars (visible)

Gas (ionized, neutral, molecules),
Dust (large molecules, singly or in
clumps), & relativistic components
(magnetic fields, cosmic rays)

Fall 2020: Week 10

Dust blocks starlight: Extinction

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 10

Extinction messes up magnitudes AND colors

$$F_{\lambda} = F_{0,\lambda}e^{-\tau} = F_{0,\lambda}e^{-n\sigma r}$$

$$m_{\text{obs}} = C - 2.5 \log(F)$$

= $C - 2.5 \log(F_0) - 2.5 \log(e^{-\tau})$
= $m_0 + 2.5\tau \log e$
= $m_0 + 1.086\tau$

Correcting Magnitudes

$$m_{\text{obs}}(\lambda) = m_0(\lambda) + A(\lambda)$$

e.g., $m_{V,\text{obs}} = m_V + A_V$
 $= V_0 + A_V$

Correcting Colors

$$(B - V)_{\text{obs}} = (B - V)_0 + (A_B + A_V)$$

= $(B - V)_0 + E(B - V)$

$$R \equiv \frac{A_V}{E(B-V)} \approx 3.1$$

Detection of gas is generally more direct

Absorption & Emission Lines (Kirchoff's laws)

Radio continuum

Fall 2020: Week 10

ISM also contains very hot gas heated by SNe

ASTR/PHYS 2500: Foundations Astronomy

All these gas "phases" are in pressure equilibrium

Cold Molecular Clouds:

 $T \sim 10 \text{ K}, \quad n \sim 10^9 \text{ m}^{-3}$

Cold Neutral Medium:

 $T \sim 100 \text{ K}, \quad n \sim 10^8 \text{ m}^{-3}$

Warm Neutral Medium:

 $T \sim 7000 \text{ K}, \quad n \sim 10^5 \text{ m}^{-3}$

Warm Ionized Medium:

 $T \sim 10,000 \text{ K}, \quad n \sim 10^6 \text{ m}^{-3}$

Hot Ionized Medium:

 $T \sim 1,000,000 \text{ K}, \quad n \sim 10^4 \text{ m}^{-3}$

 $P \sim nkT \sim const.$

Stellar Remnants: White Dwarfs, Neutron Stars, & Black Holes

Degeneracy Pressure

As stellar evolution proceeds, cores are supported by "degeneracy pressure" when there is no fusion to provide the necessary pressure to support the core against gravitational collapse.

-> acts as a "pressure floor"

Source of this pressure come from the rules of QM — Pauli exclusion & uncertainty principles

$$\Delta x \Delta p \geq \hbar$$

Material getting maximally compressed, so electron momentum/velocity driven by that compression, NOT the temperature of the material!

NOT the temperature of the material!
$$P_{\rm th} = n_e kT \sim n_e m_e v_{\rm th}^2 \quad \text{b/c} \quad v_{\rm th} \approx \sqrt{\frac{kT}{m_e}}$$

$$v_{\rm th} \approx \frac{\Delta p}{m_e} \sim \frac{\hbar n_e^{1/3}}{m_e} \quad \text{b/c} \quad \Delta x \sim V^{1/3} \sim n_e^{-1/3}$$

$$P_{\rm degen} \sim n_e m_e (\Delta v)^2 \sim \frac{\hbar^2 n_e^{5/3}}{m_e}$$

White Dwarfs

Leftover C core of a low mass (M < 7ish M_{sun}) star

$$P_{\rm degen} \sim n_e m_e (\Delta v)^2 \sim \frac{\hbar^2 n_e^{5/3}}{m_e} \longleftarrow \text{ Set these equal } \longrightarrow P_{\rm c} \sim \frac{GM^2}{R^4}$$

$$n_e^{5/3} = \left(\frac{M}{m_p R^3}\right)^{5/3} \hspace{-0.5cm} \text{Solve for R}$$

$$R \sim \frac{\hbar^2}{Gm_e m_p^2} \left(\frac{M}{m_p}\right)^{-1/3} \approx 0.01 R_{\odot} \left(\frac{M}{0.7 M_{\odot}}\right)^{-1/3}$$

More massive WDs are smaller!

Why?

Also, because they have $M \sim M_{sun}$ but are 100x smaller, their surface gravity is much stronger, producing strongly pressure-broadened absorption lines

Can a White Dwarf have any mass?

$$P_{\text{degen}} \sim n_e m_e (\Delta v)^2 \sim \frac{\hbar^2 n_e^{5/3}}{m_e}$$

As a WD becomes more massive, the pressure has to increase — what will cause the pressure to max out?

$$M_{\rm Ch} \sim \left(\frac{\hbar^3 c^3}{G^3 m_p^4}\right)^{1/2} \sim 2M_{\odot}$$

Called the Chandrasekhar mass Modern calculations give 1.4 M_{sun}

Initial mass of star	WD type
$M < 0.5 M_{\odot}$	He
$0.5M_{\odot} < M < 5M_{\odot}$	C/O
$5M_{\odot} < M < 7M_{\odot}$	Ne/Mg

Neutron Stars are supported by neutron degeneracy pressure

Supernovae!

Electron degeneracy pressure fails

Electrons absorbed into protons in nuclei creating neutrons

$$p + e^- \rightarrow n + \nu_e$$

Outer layers bounce off of forming NS (or pressure wave), causing star to explode

Historical SNe are now Supernova Remnants (SNRs)

Crab Nebula 1054

Cassiopeia A ~1680 (not clearly recorded)

Tycho SNR 1572

Can watch them expand!

Neutron Stars / Pulsars

ASTR/PHYS 1060: The Universe

ASTR/PHYS 1060: The Universe

Fall 2019: Chapter 13

ASTR/PHYS 1060: The Universe

Fall 2019: Chapter 13

Pulsars emit pulses at all wavelengths

When formed, rotates with a period of ~1s

Realistic simulation of the magnetic field of a pulsar:

https://www.youtube.com/
watch?v=jwC6_oWwbSE

Millisecond Pulsar: https://www.youtube.com/ watch?v=MPpDTvYL5ik

Black Widow Pulsar:

https://www.youtube.com/
watch?v=-SoZ1xvCpMw