

ASTR/PHYS 2500: Foundations Astronomy

Week 10: ISM & Stellar Remnants

HW8 due now

HW9 online (last HW before Midterm 2 on Nov. 12th)

Read Ch. 19.1-3, 19.7 for next week

Can a White Dwarf have any mass?

$$P_{\text{degen}} \sim n_e m_e (\Delta v)^2 \sim \frac{\hbar^2 n_e^{5/3}}{m_e}$$

As a WD becomes more massive, the pressure has to increase — what will cause the pressure to max out?

$$M_{\rm Ch} \sim \left(\frac{\hbar^3 c^3}{G^3 m_p^4}\right)^{1/2} \sim 2M_{\odot}$$

Called the Chandrasekhar mass Modern calculations give 1.4 M_{sun}

Initial mass of star	WD type
$M < 0.5 M_{\odot}$	He
$0.5M_{\odot} < M < 5M_{\odot}$	C/O
$5M_{\odot} < M < 7M_{\odot}$	Ne/Mg

Neutron Stars are supported by neutron degeneracy pressure

Supernovae!

Electron degeneracy pressure fails

Electrons absorbed into protons in nuclei creating neutrons

$$p + e^- \rightarrow n + \nu_e$$

Outer layers bounce off of forming NS (or pressure wave), causing star to explode

Historical SNe are now Supernova Remnants (SNRs)

Crab Nebula 1054

Cassiopeia A
~1680
(not clearly recorded)

Tycho SNR 1572

Can watch them expand!

Neutron Stars / Pulsars

ASTR/PHYS 1060: The Universe

Jocelyn Bell Burnell

Discovered radio pulsars as a grad student in 1967 (but her PhD advisor won the Nobel Prize, not her)

In the radio, the pulses are very short and recur with periods of milliseconds to seconds

Pulsars emit pulses at all wavelengths

When formed, rotates with a period of ~ 10-100 ms

Realistic simulation of the magnetic field of a pulsar:

https://www.youtube.com/
watch?v=jwC6_oWwbSE

Millisecond Pulsar:
https://www.youtube.com/
watch?v=MPpDTvYL5ik

Black Widow Pulsar:

https://www.youtube.com/
watch?v=-SoZ1xvCpMw

ASTR/PHYS 1060: The Universe

Fall 2019: Chapter 13

Can a Neutron Star have any mass?

Neutron degeneracy pressure will also eventually fail

$$M_{\rm max,NS} \approx 3 M_{\odot}$$

Once a NS reaches the critical mass, its collapse can no longer bed stopped. All of its mass will end up (as far as we know) in a single point at the center of the black hole, called the <u>singularity</u>.

Why is it called a singularity?

Roger Penrose won the Nobel Prize this year for mathematically proving that black holes must have singularities at their centers, *IF* general relativity is the correct theory of gravity.

Black Holes

If the Sun suddenly collapsed and formed a black hole, what would happen to the Earth?

For a spherically symmetric object, its gravitational force (outside the object) is identical to that of an object with the same mass all at r = 0 —> exactly the case of a black hole!

The escape speed for a BH is the same as usual then, but b/c we can get much closer to them, the escape speed can get really high

$$v_{\rm esc} = \left(\frac{2GM}{r}\right)^{1/2}$$

Set $v_{esc} = c$ (speed of light)

$$r_{\mathrm{Sch}} = \frac{2GM}{c^2}$$

Schwarzschild radius
The spherical surface defined by this radius is called the event horizon

Black Holes

Spaghettification

 $F_{\rm g}$ changes so quickly with radius that gravitational tidal forces (the difference in $F_{\rm g}$ between your head and your feet) become strong enough to rip you apart as you fall towards a BH's singularity

Other effects (e.g., explaining Interstellar)

BH with accretion disk (no gravitational lensing)

What it would actually look like

Gravitational Lensing

Light follows shortest path b/t 2 points, but space-time curved, so light rays are curved

Time Dilation

Time passes slower the closer you are to a massive object (GPS satellite clocks "have more ticks" than our clocks in a given interval of time)

Gravitational Redshift

Light has to "climb out" of a gravitational potential well, losing energy — light with less energy has a longer wavelength (just outside the event horizon, light is nearly infinitely redshifted)

Observing real NSs and BHs

Star's life determined mostly by its initial mass

White Dwarf:

 $M < 7M_{\odot}$

Neutron Star:

 $7M_{\odot} < M < 18M_{\odot}$

Black Hole:

 $M > 18 M_{\odot}$

