

ASTR/PHYS 2500:

Foundations Astro

Week 3: Light

HW2 due on Thursday

Read Ch. 5 (can skip 5.5)

Let there be LIGHT!

- Review of atomic structure, energy exchange processes, and spectroscopy
- Radiative transfer
- Thermodynamic equilibrium
- Blackbody radiation
- Wien's Law

"Light" is electromagnetic radiation of any wavelength/frequency, not just what eyes see

Classically, can be thought of a wave traveling down an electric field line like an induced transverse wave down a rope.

In QM, quanta of the wave are called photons, which have energy and momenta determined by wavelength/frequency.

Atomic Structure (quantized energy levels)

Atomic Structure (quantized energy levels)

Energy Levels

$$\Delta E = E_n - E_{n'} =$$

$$(13.6 \text{ eV}) Z^2 \left[\frac{1}{(n')^2} - \frac{1}{n^2} \right]^{n=2}$$

(Energies correspond to neutral hydrogen)

Absorption of Energy

Photoexcitation

Collisional Excitation

Absorption of Energy

Photoionization

Collisional Ionization

Emission of Energy

Stimulated Emission

Spontaneous Emission

Collisional De-excitation

Emission of Energy

Radiative Recombination

Kirchoff's Laws

- A solid, liquid, or dense gas produces a continuous spectrum.
- A tenuous gas in front of a hot background produces an absorption spectrum.
- A tenuous gas in front of a cool background produces an emission spectrum.

Spectra are like Fingerprints

They encode what and how much of an element is present in a gas (of a cloud, star, etc.), how hot it is, and whether it's being excited by something else

Each element has a unique pattern of lines, which can be seen in absorption or emission

$$\Delta E = E_n - E_{n'} =$$
(13.6 eV) $Z^2 \left[\frac{1}{(n')^2} - \frac{1}{n^2} \right]$

unshifted \triangle Longer wavelength Lower frequency "redshifted" unshifted

Allows us to infer motions along the "line of sight"

Doppler Shift

"blueshifted"

Shorter wavelength Higher frequency

$$z = \frac{\Delta \lambda}{\lambda} = \frac{\Delta \nu}{\nu}$$

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Motion-induced Broadening (small Doppler shifts cause lines to appear more broad)

- Thermal Broadening
- Rotational Broadening
- Turbulent Broadening

Other Types of Broadening

- Natural Broadening
- Pressure Broadening
- Zeeman Broadening

Natural Broadening

$$\frac{dN_{\text{phot}}}{dt} = n_2 A_{21}$$

$$A_{21} \sim 10^8 \ {
m s}^{-1}$$
 (permitted) $\sim 1 \ {
m s}^{-1}$ (forbidden)

Heisenberg uncertainty principle

$$\Delta x \cdot \Delta p \gtrsim \hbar$$

$$(\frac{\Delta x}{c})(\Delta p \cdot c) \gtrsim \hbar$$

$$\Delta t \cdot \Delta E \gtrsim \hbar$$

Broadened Line Shapes

Standard Deviations

$$(\nu - \nu_0)/\sigma$$

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Doppler Broadening

Thermal Broadening

Velocity distribution of particles in thermal equilibrium have a Maxwell-Boltzmann distribution

$$F(v)dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

$$F(E)dE = F(v)\frac{dv}{dE} = \frac{2}{\sqrt{\pi kT}} \left(\frac{E}{kT}\right)^{1/2} \exp\left(-\frac{E}{kT}\right)$$

$$\langle x \rangle = \int x f(x) dx$$

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}} \qquad \langle E \rangle = \frac{3}{2}kT$$

Avg. particle speed

Avg. particle kinetic energy

Doppler Broadening

Thermal Broadening

line-of-sight "velocity dispersion"

(width of a Gaussian distribution)

$$\sigma_{\rm los} = \left(\frac{kT}{\mu m_p}\right)^{1/2} \approx 100 \text{ m s}^{-1} \left(\frac{T}{1 K}\right)^{1/2} \mu^{-1/2} \longrightarrow \frac{\Delta \lambda}{\lambda} \approx \frac{\sigma_{\rm los}}{c}$$

ASTR/PHYS 2500: Foundations Astronomy

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Motion-induced Broadening (small Doppler shifts cause lines to appear more broad)

- Thermal Broadening
- Rotational Broadening

Fall 2020: Week 03