

ASTR/PHYS 2500: Foundations Astronomy

Week 4: Light / Solar System

HW 2 past due (any submission before now is OK)

HW 3 due on Thursday @ 10:45am

Read Ch. 5 (except 5.5), and 7.1, 8.1-2, 11.1-2 for Thursday

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 03

unshifted \triangle Longer wavelength Lower frequency "redshifted" unshifted

z = -

Doppler Shift

"blueshifted"

Shorter wavelength Higher frequency

Allows us to infer motions along the "line of sight"

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Motion-induced Broadening (small Doppler shifts cause lines to appear more broad)

- Thermal Broadening
- Rotational Broadening
- Turbulent Broadening

Other Types of Broadening

- Natural Broadening
- Pressure Broadening
- Zeeman Broadening

Natural Broadening

$$\frac{dN_{\text{phot}}}{dt} = n_2 A_{21}$$

$$A_{21} \sim 10^8 \ {
m s}^{-1}$$
 (permitted) $\sim 1 \ {
m s}^{-1}$ (forbidden)

Heisenberg uncertainty principle

$$\Delta x \cdot \Delta p \gtrsim \hbar$$

$$(\frac{\Delta x}{c})(\Delta p \cdot c) \gtrsim \hbar$$

$$\Delta t \cdot \Delta E \gtrsim \hbar$$

Broadened Line Shapes

Standard Deviations

$$(\nu - \nu_0)/\sigma$$

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Doppler Broadening

Thermal Broadening

Velocity distribution of particles in thermal equilibrium have a Maxwell-Boltzmann distribution

$$F(v)dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

$$F(E)dE = F(v)\frac{dv}{dE} = \frac{2}{\sqrt{\pi}kT} \left(\frac{E}{kT}\right)^{1/2} \exp\left(-\frac{E}{kT}\right)$$

$$\langle x \rangle = \int x f(x) dx$$

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}} \qquad \langle E \rangle = \frac{3}{2}kT$$

Avg. particle speed

Avg. particle kinetic energy

Doppler Broadening

Thermal Broadening

line-of-sight "velocity dispersion" (width of a Gaussian distribution)

$$\sigma_{\rm los} = \left(\frac{kT}{\mu m_p}\right)^{1/2} \approx 100 \text{ m s}^{-1} \left(\frac{T}{1 \text{ K}}\right)^{1/2} \mu^{-1/2} \longrightarrow \frac{\Delta \lambda}{\lambda} \approx \frac{\sigma_{\rm los}}{c}$$

ASTR/PHYS 2500: Foundations Astronomy

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Motion-induced Broadening (small Doppler shifts cause lines to appear more broad)

- Thermal Broadening
- Rotational Broadening
- Turbulent Broadening

Fall 2020: Week 03

Radiative Transfer / mfp / optical depth / Blackbody Spectra

Solar System

Mass Fractions

Mass Fractions

Structure of the Sun

Core:

~15 million K

H —> He fusion produces Sun's photons

Photons take ~100,000 years to travel through the Sun, then take 8 min to reach the Earth

Temperature decreases outside the core until it falls to 5780 K at the "surface"

Temperature & Density Profiles of the Sun

Photosphere: Limb Darkening

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 03

Corona: high T allows particles to reach vesc

