

ASTR/PHYS 2500: Foundations Astronomy

Today: Stars cont.

Midterm 1 Review

Tomorrow: VP Debate

Thursday: Midterm 1 Exam

HEAP Jamboree

Video available on Ubox:

https://uofu.app.box.com/s/

7upgc6vn7q92l35xfogrwutapsutvjrm

VP Debate - Science Policy

- The science that gets done in the US is the science that gets funded
 - Astronomy is primarily funded through the NSF, NASA, and DOE
 - NASA is 0.5% of the total budget, science activities make up <10% of that
- If a candidate does not choose to listen to scientists, they will make uninformed policy decisions that affect the progress of humanity
 - Human-induced climate change exacerbates droughts and storms (hence the increase in fires and hurricanes), costing billions
 - The scientific consensus about this is comparable to that on gravity
 - While how COVID-19 spread was somewhat unclear early on, it is better understood now and masks and social distancing are known to be effective
- Science is a METHOD: observe, theorize, explain, predict, argue; transparently

Breakout Discussion

http://www.astro.utah.edu/~wik/courses/astr2500fall2020/slides/week6.pdf

Then

Whiteboard

Midterm 1 Review!

Sky Coordinates (RA/Dec)

spring equinox

Rise/Set Times & Precession

How do Galileo's observations of Venus support the heliocentric model of the solar system?

Kepler's 3 Laws

(3)
$$P^{2} = \frac{4\pi^{2}}{G(M+m)}a^{3}$$

Generic Orbits & Energetics

Hyperbola e > 1 $E_{tot} > 0$

Energy Levels

$$\Delta E = E_n - E_{n'} =$$

$$(13.6 \text{ eV}) Z^2 \left[\frac{1}{(n')^2} - \frac{1}{n^2} \right]^{n=2}$$

(Energies correspond to neutral hydrogen)

Emission / Absorption Processes

Photoexcitation

Collisional Excitation

Photoionization

Spontaneous Emission

Stimulated Emission

 $h\nu$

 $h\nu$

Collisional De-excitation

Radiative Recombination

ASTR/PHYS 2500: Foundations Astronomy

Fall 2020: Week 07

unshifted \triangle Longer wavelength Lower frequency "redshifted" unshifted

Allows us to infer motions along the "line of sight"

Doppler Shift

"blueshifted"

Shorter wavelength Higher frequency

$$z = \frac{\Delta \lambda}{\lambda} = \frac{\Delta \nu}{\nu}$$

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Motion-induced Broadening (small Doppler shifts cause lines to appear more broad)

- Thermal Broadening
- Rotational Broadening
- Turbulent Broadening

Other Types of Broadening

- Natural Broadening
- Pressure Broadening
- Zeeman Broadening

Velocity distribution of particles in thermal equilibrium have a Maxwell-Boltzmann distribution

$$F(v)dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

$$F(E)dE = F(v)\frac{dv}{dE} = \frac{2}{\sqrt{\pi kT}} \left(\frac{E}{kT}\right)^{1/2} \exp\left(-\frac{E}{kT}\right)$$

$$\langle x \rangle = \int x f(x) dx$$

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}} \qquad \langle E \rangle = \frac{3}{2}kT$$

Avg. particle speed

Avg. particle kinetic energy

Radiative Transfer / Optical Depth / LTE

$$I_{\nu} = I_{0,\nu} \exp[-\tau_{\nu}(x)]$$

$$\tau = n\sigma x$$

$$\text{m.f.p. } \ell = \frac{1}{n\sigma}$$

$$J_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$

$$L = 4\pi R^2 \sigma_{\rm SB} T^4$$

Exoplanet Detection

Measuring Stars

Parallax

$$d = \frac{1 \text{ pc}}{\pi''}$$

Inverse Square Law

$$F = \frac{L}{4\pi d^2}$$

Effective Temperature

$$T_{
m eff} = \left(rac{L}{4\pi R^2 \sigma_{
m SB}}
ight)^{1/4}$$
 Distance Modulus $m-M = 5\log\left(rac{d}{10~
m pc}
ight)$

$$m_2 - m_1 = 2.5 \log(F_1/F_2)$$

Apparent Magnitude

$$m = C - 2.5 \log(F)$$

Absolute Magnitude

$$M_{\rm bol} = 4.74 - \log (L/L_{\odot})$$

$$m - M = 5 \log \left(\frac{d}{10 \text{ pc}}\right)$$