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Emergence of Modern
Astronomy

Modern astronomy has deep historical roots. The main path of development for astron-
omy begins with the ancient Babylonians, Greek astronomers built on the observations
of the Babylonians, creating a science of astronomy that was mathematical and deduc-
tive in nature. Ancient knowledge about the heavens was preserved and expanded during
medieval times by Arabic scientists. During the Renaissance, the heliocentric theoey of
Copemicus led 1o akditional advances by scientists such as Galileo and Kepler, This lin-
cage, Babylonians to Greeks to Arabs (o Europeans, is a great oversimplification of the
rich history of astronomy. However, in a single chapter, we have only enough space for
a broad overview of how modern astronomy evolved.

EARLY GREEK ASTRONOMY

Of the nine muses of ¢lassical mythology. cight dealt with various forms of music, dance,
and poetry; the ninth muse, Urania, was the Muse of Astronomy. This is indicative of
the ancient Greek approach (o astronomy: the motions of Sun. Moon, and planets were
regarded as a lype of cosmic dance, revealing an underlying rhythm and harmony. A
mann goal of ancient Greek astronomers was to build, using deductive reasoning and
mathematical computations, a conceptual model for the universe that explained the
(sometimes complicated) motions of celestial bodies. To provide a bit of clarification,
when historians of science talk abowt “ancient Greek astronomy,” they aren’t talking
solely about developments in the geographical region currently called Greece. Rather,
they embrace the entire Greek-speaking world, which in Hellenistic times, alter the
conquests of Alexander the Great, embraced much of the Mediterrancan basin and the
Near East.

Our knowledge of Greek astronomy, particularly in the time prior to Aristode, is
sadly fragmentary, due 10 the incompleteness of the written record. Many early Greek
astronomical works are lost and are known 10 have existed only because they were cited
by later writers. Some general aspects of Greek astronomy are well established, however,
For instance, the Greeks were the first known culture to realize that the sky 1s three-
dimensional; that is, it has a sigmificant depth. Earlier societies, such as the Babylonians
and Egyptians, thought that the sky was a thin, solid dome. arching over 2 flat Earth. ‘The
maost famous written description of such a domed universe is in the first book of Genesis:
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walers which were under the firmament from

“Crod made the hrmament, and divided 1}
as so. And God called the irmament
heaven.”! Greek astronomers, b { Moon, instead of being
ddisks \lL;;k o a domed ‘.l\\, were spherical objects, at .Y.:l’.:.':nl distances from the Earth

the w ~n-|\ which were above the fi

The realization that space was three-di Greek astronomers (o an under

standing of various \'n_".'\ll,li ellects, For insu rectly explamned the causes

the phases of the Moon. Dun

. £ S e y-
» course of 29.5 days, the Moon appears 1o |

in shape against the sky (sec Figure 4.10b, for instance). The Moon wanes from a full

circle on the sky (the full Moon) through gibbous and crescent phases until it seems

1o disappear (the new Moon). It then waxes through the crescent and 2ibbous phases

n, 29.5 davs alter |

until it reaches full Moon ; w previous full Moeon, The ancient

Greeks realized that the phases occur because the Moon 1s an opague sphere illumimated
by the Sun. As the Moon orbits the Earth, we see diff
the Moon, causn

rent fractions ol the illuminated

¢ ol apparent che

hemast

e in shape.

The Greeks also realized the cause of eclipses. During a lunar eclipse, the Moon
darkens drs the Mo i
depriving it ol the sunlight that usually illuminaies the Moon's surlace, During a solar

the LEarth’s shadow,

natically: this is bed n passes hro

eclipse, the Sun darkens scally: this is because the opague Moon passes between

he Earth and the Sun, blocking the sunlight that vsually reaches the Earth’s surlace
Mus, Greek astronomers realized that the Sun is Farther away from us than the Moon
is.”

Aristotle {384 322 BC) was one of Lthe great phi
ok On the Heavens, writlen arou

wk. Aristotle pointed out that the l...nh wWas S

losophers and scientists of the Greek

world, In his

350 BC, he turned his attention
weal and gave four

s based

astronomy. In this w

ISOTE WS

physical reasons, based on ob servation, why this must be tree. His first reg

wily works: sinee gravity draws dense materials toward

on jli-. .||‘.~-'L'I".

the center of the Earth, the resulting compression must squeeze the Earth’s subst

into as ..‘.'-mr..n.-l o form as possible—which is a sphere. His second reason was based on

obscervations of partial lun: wes: when edge of the Earth’s shadow falls on the

Moon, it always forms an arc of a circle. The only object that always casts

shadow is a sphere; thus, the Eurth must be spherical.

His third reason was based on observing that new appear above the horizon

crical i::l'lh observers at a latitude |

when vou head south toward the cquatos: on s

e equator cannol see stars with dechination § < =907 4 £.7To take an exampl

north of
known in ancient times., the star Canopus (8 =2 —=337) is inv Nhl from Athens (£ == 38
«d that the Earth was

north—south direction, as a sphere would be, His fourth reason was based on

N but is visible from Alexandria, in Egypl (¢ = 31°N).”

observing elephanis: since clephants existed both in Morocco, the westernmost region

known 1o Aristotle. and in India, the casternmost region known to him, the (w

“firmnament” in the King

aval is moce graphic in the original Hehrew the woad transhiled

ation is ragia, which means a metal shoot oe bowd that his been banmunered outl ol 2 salud

L

iscussed i more detasl in Secton 4.4

= The Moon's phases are

Echipses are discussed in more detail in Sectivo 4.6
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Moon

—_—— — — Sun
Fanh

FIGURE 2.1 Ihe geometrical method of Arstarchus fi i deteemining the relative

vl

distances 1o the Moon and 10 the Sun. (N 10 scale.)

must actually be adjacent to cach other on the spherical surface of the Earth. (This last.

elephant-based reason sounds absurd 1o modern ears, but it’s actually an llustration of

how you can arrive at the right answer for the wrone reasons. )

v -

4 310-230 BC) was notorious in his day for his
unprecedented beliel that the Earth o

chus ¢

nls the Sun, rather than vice versa. The only
surviving book ol Aristarchus. On the Sizes and Distances of the Sun and Maoon, doesn’t
exphicitly mention his heliocentric (Sun-centered) model for the universe: instead. it puts
Sun and Mouon.
h, see half the
Moon’s disk illuminated, then the Earth-Moon—-Sun angle must be exactly 907, as seen
in Figure 2,1, When the E

torward geometnc methods for determining the relative distances 10 1

and their relative sizes. Anstarchus realized when we, on the E

h-Moon-Sun angle is 907, then the ratio of the Earth-Moon

distance A to the Eanth-Sun distance C is

A
C

COs (2.1)

where 7 is the measurable angle between the Sun and Moon as seen from the Earth
Unfortunately, the angle ¢ is diflicult to measure with sufficient accuracy, since the
difference between ¢ and 90 is tiny. Aristarchus thought the angle was @ - $7°, which

would give

-~

AJfcos 87 19A4. (2.2)

However, the actual value of the angle is

_f'i\t'\
( A/ cos 39853 390 A 2 3)

Because of the difficulty of measuring & with sufficiently high accuracy, Anstarchus
underestimated the dis

nee Lo the Sun, relatve to that of the Moon, by a luctor of 2

Nevertheless, Aristarchus did correctly deduce that the Sun is much farther away
than the Moon is. Since the Sun and the Moon are the same angular size as seen from
Earth, we know Irom similar triangles that the ratio of their diameters is the same as
the ratio of their distances from Larth. That is, Anstarchus thought that the Sun was 19
tmes bigger than the Moon in diameter (whereas, the Sun is actually 390 times higger

AWONOMLSY
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than the Moon). Anstarchus knew that the Moon was smaller than the Earth, since it fits

inside the Eanth’s shadow duris Hunar eclipse. Moreover, he calculated, by further
geometric arguments, that the diameters of Moeon, Earth, and Sun had the approximale
relative values 1:3:19, Again. although the exact numbers are wrong (1hey are actually
rer than the

at the Sun s much lar

closer 1o 1:4:390). Arnstarchus correctly deduced i
Earth, thus lending support to. or perhaps even inspiring, his beliocentric model for the
universe. [t scemed sensible 10 Anstarchus that the small Earth should o0 around the

large Sun rather than the reverse.

Arnstarchus deduced the relanive sizes of the Moon, Earth, and Sun: absolute values
for their sizes, in physical units, were provided by the work of Eratosthenes {276-195

¢ of Alexandria. Although

BC), who served as the head librarian of the famous Libe

inal works of Eratosthenes have been lost, a later textbook by the astronomer

the orig
Cleomenes records the method by which Eraosthenes determined the circumlerence
of the Earth.? Eratosthenes was aware that exactly al noon at the time of the summer
solstice, the Su
Aswian, in upper Egypt).

On the same date, however. the Sun doesn’t pass through the zenith as seen from

nstcad

Eratosthenes measured the angle @ and found it 1o be 1/50 of a tull circle, or o — 7712

vas at the zenith as seen [rom the town of Syene (the modern city of

Alexandria:

v shown in Figure 2.2, 0t is an angle o south of the zenith at noon.

At this point, Eratosthenes assumed that the Earth is spherical (he had read his Aristotle)
and that the Sun s far enough away that the Alexandria-Sun line is effectively parallel 10

the Syene-Sun line. In that case, angle 8 in Figure 2.2 must be equal wangle ¢ Since g,

the angular distance between Alexandria and Syene, is equal to 1/50 of a full circle, the

and Syene must be 1750 of the circumference

physical distance 1 between Alexandria
of the LEarth. That is,

C =300, (2.3)

where € is the circumference of the Earth. The distance between Alexandria and Syene
I

ol the stadium in which foot races were held. This meant that the Earth's circumference

wis known to be SO sitades: the srade was a Greek unit off length, based on 1

WS
C = 50 x SU0O stades = 250,000 staches, (2.5)

The length of the stade was not uniform throughout the ancient world, and historians of
seience have had a grand tme debating the exact length of the stade used by Eratosthenes

[

Perhaps the most widely used stade at the time of Eratosthenes was the Attic, or Athenian,

stade, equal in length to 185 meters, If we assume that Eratosthenes used the Attic stade.
then the circumierence that e computed was

{185 m

C = 250,000 stades | } 4.6 x ¥ m = 46,000 km. (2.6)

\ I stade /

' Like most texiboak writers. Cleomenes Laborad in hamble obscurity: in fact, so obscure wias Cloomenes that

estimuees of when be wroee his rext minge trom 100 BC 1w ADAT0

"Thas equality is proved s Proposition 29 in Book 1 of Eaclid s Flements, written ca 30 B

Al
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Alexandna
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FIGURE 2.2 The geometrical method of Ertosthenes for determining the
circumference of the Eanh.

hios

Eratosthenes, Greek a

This 15 only pe of 40,000 k. Thus, by the ume o

knew the Earth is spherical but also had a

reasonably correct wlea of s size
Hipparchus (¢ 199-120 BC) was px rreatest astronomical observer during

antiquity. Hipparchus is eredited with a number of accomplishments:

* He produced an accurate catalog of hundreds of star positions. It was his careful ob-

cession ol XS,

servations that ked Hipparchus to the discovery of the the equ
mentioned on page 14. He noted that the bright star Spica, which lies ¢lose 1o the

echpuic, was 6% west of the autumnal equimox, However, a star catalog made 150

2 87 west of the autumnal equinox. Hence,

years earlier had described Spica as being

Hipparchus deduced that the equinoxes were shipping westward relative to Spica

and the other stars at a rate of 27 per 150 years, equivalent to 48" yr'; this is close

10 accurate modem value of 50.37 ¥l

¢ Hc cstablished the magnitude system tor describing the brightness of stars. He

called the brightest stars “first magnitude.” and then worked downwand through

second, third, fourth, and lilth magnitudes, all the way down to the faintest stars he

i

W MOre quaniiaiye magmiude

could see, which were labeled “sixth magnitede T

system that 1s used by astronomens today (desenbed inmore detail in Section 13.2)

is based on that of Hipparchus.

h the onginal work of

¢ He computed a more accurate distance to the Moon. Althou

Hipparchus is lost, like so many works of Greek astronomy, @ later commentaton

stated that Hipparchus found the average BEarth-Moon distance to be roughly

times the Earth’s radius. The actual average separation is 0.5 Earth ra

AWONOMILEY % SIS AL




Chapter 2 Emergence of Modern Astronomy

e He measured the kength ol the tropseal year with an error ol less than 7 minutes.
{Despite having such an accurate measure of the length of the year available, the

Roman pontilices salf boiched thew ¢ jar!)

The observations of Hipparchus were the basis of the Ptolemaic model for the universe,

which dominated Western astronomy for more than 14 centuries,

1o

.2 = PTOLEMAIC ASTRONOMY

1" Prolemy™ for short) lived and worked in Alexandria, Egypt,

Claudus Plolemacus (e

wl century AD. The scanty details that we know about his life

during the mud-seco
come from his surviving astronomical books, His main work, which Polemy called

is¢™) is better known by the nume apphied 1o

Mathematike Svotaxis (C"Mathematical Tre

est, a name that comes from an Arabic phrase meaning

the middle

iin

“the best.” As you right ¢ n its fattering nickname, the Afmag was the most

highly regarded astronomical work in the Western world from the time it was written untl

The main portion

of the Afmagest 15 devoled 10 a geometrical

andd planets as seen Irom

s briefly review the motions

f“h_' \l\l.'!.'?lil'. \'L'Illll.".'
del that describes the mod

n 1ons of the stars, Sun,
Earth, Belore going into detail about Plolemy’™s mo

ol celestial bodies that be was attempting to explain.,

e Stars move in divmal cucles about the celestial poles, with one complete crrcul

requiring one sidercal day. The stars are fixed in position relative 1o each other (this

is only approximately true, but the relative motions o aracdual for

the Greeks to have discovered).

e The Sun moves castward relative to the stars along

_The average rate of motion is roughly 17 per

he ccliptic, which is tlted af

23.5" relative to the celestial equatc

LL['\', but this vares over the course ol a vear.

close 10, but nee

ard relative to the stars

rate of motion s roughly 137 per day,

e The Moon moves castw long a path

identcal with, the ecliptic. The avera,
but this varies over the course ol & month

e The planets Mercury, Venus, Mars, Jupiter, and Saturn usually move castward

relative 1o the stars, along a path ¢lose 1o the echptic: sometimes, however, they

reverse course and move westwanl. An example ol the prograde {castward ) and

retrograde (westward) motion of Mars is shown in Figure 1.7.

Prolemy's job was made unnecessarily complicated by the erroneous assumptions that he

made. Iirst, he assumed that the Earth was stationary at the center of the universe, In other

words. the Prolemaic model was geocentric (Earth-centered) rather than heliocentric

(Sun-centered). Second, he assumed that celestial bodies moved i perfect circles a

constant speed. This doctrine of uniform circular motion can be traced to carly Greek

O From now oo 2] Gates in this seatboak wall be AD, undess ocherwise inddicaed.

~

o e

& v

-
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" Deferent

FIGURE 2.3 A planct moves

at constant speed around the center of s epicycle.
while the center of the

combinaizon causes @ model Pl

philosophers such as Pythagoeas and Plato

'l—.lc} |'L'|I\'\ od thar the heavens Were |7¢.'|‘|1\'1,
in contrast 1o the obviously impe

ct Earth, and that heavenly bodies must theref

vl
move in ¢ircles (which were regarded as a perfect shape) at a perlectly constant -.pr»;-_f.
Given these assumptions, explaining the apparent motions of the “fixed slars™ was
casy: Prolemy assumed they were affixed 1o a rigid spherical shell, which rotated
rom east to west about the celestial poles, complelng one rotation every sidereal day.
Explaining the ;:pp.;u"l' motion of the Sun was more difficult. How could the nonunifo

motion of the Sun along the ec liptic be reconciled with the de wma of umform "-"::l:r
motion”? Polemy followed the example of his predecessors by usi ng a concept known

as the eccentric. The Sun. Prolemy assemed, moved al long a circular orbil at 2 constant
speed; however, the Earth was offset from the orbital center by a short distance. This
small offset was referred to as the orhir’s eccentric.” As the Sun moves along the arbit
ata constant physical speed, its angular \'p-: das seen from Farth is greatest when it's
closest to the Eanth, and smallest when it's larthest from the Earth, Prolemy found tha
when he displaced the Earth from the orbital center by roughly 4% of the orbital

he could .""‘Ilk uce the .nwkr'.'“ motons of the Sun with

1 .-J'u.\.

r x|L'LI.'|.|"'u'
Although the eccentric can describe an angular speed that varies with time,

witl It cannod
describe retrograde motion, in which the angular spe

el ol a planet actually changes

sign, rather than simply slowing down and specding up, P '--I.. my \\.p..u wd retro

motion of a planet by using an cpxculv illustrated in Figure 2.3, In the epicvelic mo

a planet travels at a constant speed around i circular path L,gllul an epicvele. At the
4 v

I word “eccentne” Hilerally means “uway from the center™

vacalafnend’s behaviar aocening,

thal’s smather way of saying thil he's o few standard devinions 2way from the mcan
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¢ Prolemaic maodel for a planet™s motion, inchxling the

FIGURE 2.4 The compl

e time. the center of the epicycle moves a1 2 constant speed around the center of

a larger circle called the deferent. The combination of an epicycle and a deferent can

a
s counterclockwise at a speed

produce retrogridde motion. Suppose the pl

around its epicycle, while the center of the epicycle moves counterclockwise at a speed

w around its deferent. as shown in Figure 2.3. When the planct is at the outside of
o the center of the deferent is v + w; when it's at the

its epicycele, its speed relat

« o, the planet 15 actually moving

e ol s \"‘iu'};’l;. its speed s v w. Th
v it is closest 1o the center of the deferent, A typical
3. By fiddling with

1}

backward (or in retrograde) wh

ath 1raced out by a planet on an ¢picyele is shown in I
I

(h the relative orbital speeds

the sizes of eccentrics and epicycles, and by playing w
. and deferents. Prolemy could get a fairly good fit to the observed motioas

ol Cpreve

of planets on the celestial sphere, but not quite a00d enough. His models were unable

(o match the observations exactly, Fecentrics, deferents, and epicycles were ideas that

Prolemy had inherited from previous Greek astronomers. However, in order 1o match the

observations with the necessury accuracy, Plolemy introduced a new device called the

< | sratoad I 8 ]
equant, llustrated in Figure 244
In Ptolemy's new construction, the Earth {labeled E in the higure) is ollsel

erent {labeled C) by a small distance. Prolemy dictated, b

! r'l.l:\ sical

center of the planet’s de
the delerent at a chang

1e center of the epicyele (labeled ) moved al
speed would be constant as seen [rom 1he equant point

ight fine

speed, such that its angular
(labeled Q). The equant (Q), orbital centes (C), and Earth (E) lic along a s

and are spaced so that the distance Q-C is equal o the distance C-E, The concept of the

r motion to the absolute limit: according

equant stretehed the docirine of uniform cire

e
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10 Plolemy’s enilics, it streiched it beyond the T, Many medieval astronomers were

dissatisfied by the rather contrived no of the equam

Nevertheless, Plolemy’s complete el for a planctary orbit, incleding 2 deferent.
epicycle, and equant, had enough adjustable parameters 1o enable Prolemy to make guite

accurate predictions of the motions of planets as seen from Earth It is not ¢lear tha

Prolemy intended his omplicated geocentric n

odel 10 be an actual physical mode] of
the cosmuos. It worked adequately as a mathematical model. which accounted for s
popularity durir 1 medieval nmes; people wanted reasonably accurate predictions of the
locations “' the Sun, Moon, and plancts, which the Piolemaic model provided. The

S

that Prolemy’s model was geocentric also made it con ceptually acceptable, There were
numberof ||l... stble arguments. dur ning Prolemy’s time and Later, wi ¥ a geocentric model
seemed correet:

* We cannot feel the motion of the Earth, A circumflerence of 250,000 stades implics

a rotation speed at the Earth” S equator of roughly 3 stades per second, or abour 54

times the speed of the fastest sprinter. It scemed inconceivable that such 2 rapid
speed should be imperceptible.

® The Earth’s centrality and importance was somchow gratifying. (The Earth must
be impoetant; after all, we live on i)

. St(-llzlr parallax 5s not observed. This is the most serious sci wenlific ohjection to a

wliocentric model and deserves 2 luller discussi on. which s given helow.

In general, the term parallax refers to the shiltin apparent position of an obicet w
& I ] |

WKnseen
"'nrn two different locations. For instance, i'vou hold LI" your thumb at anm’s length and

view it first through your right eyve and then throush your Jeft, you will see your thumb's
"n 1ge jump from left to nght by rou

ghly 5% relavve t .v'\u.lx in the backeround. In

astronomy, the term geocentric parallax refers to the shift in apparent _{\-\Zli-.-n of a

relatively nearby object, such as the Moon or a planet, ‘»\-'htl'; seen from two differem
points on the Earth's surface. Geoventric parallax. illustrated in Figure '_‘..‘;L is also
referred 1o as diurnal parallax. If you want to ohserve geocentric parallax, vou don’

have 10 20 on an expediton; during the course of 12 hours, the daily (or diumal) rotion

of the Earth will carry you through a distance & = D cos ¢, where ) = 212,700 km is the

Earth's diameter and £ is your latitude. The closer an objeet is o the E: rith, the Wr s

geocentric parallax will be. The Moon shifts in apparent position by as much as 2° when

viewed from antipodal points on the Earth: however, the Sun's corresponds ng shift n
apparent position is smaller by a factor of 390, since the Sun is 390 times farther AWy

than the Moon is, Thus, the geocentric parallax of the Moon was casil ¥ measured
ancient astronomers (1t's how Hipparchus measured the (istance to the Moon.
but the diurnal |l"r:-il‘|\ of the Sun, and of the yet more distant stars, is too \lfx;ll' to he
measured by the naked eve

The daily rotation of the Earth causes 4 ¢ hange in position of an observer on the Eart
so does the annual revolution of the Earth around the Sun. Heliocentric parallax is the
shilt in apparent position of a relag vely nearby star when seen from two different points
on the Larth’s orbat. Heliocentric para

Hax. illustrated in Fiaure 2.5b. is also ref crred o as

| —

cu

annual parallax. If you want to ohserve helincentric paraliax, vou don’t have o launch
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FIGURE 2.5

Earth's cenrer. (b)

a spacecrall: during the course of half'a year, the annual revolution of the Farth will carry
vou through a distance egual 1o the diameter of the Eanh’s orbit.

Before the invention of the telescope, astronomers attempled 1o measure the annual
nized two possible explana-

parallax of nearby stars but were unsuccessful. They

tions lor the lack of detectable annual parallax: either the Earth was stationary or the
stars were so far away that the annual parallax, like the diurnal parallax, was too small
stellar positions could be measured n

to be measured. Given the accuracy with whic
antiquity. Ptolemy and others deduced that if the solar system were heliocentric, then the
nearest stars would have to be at a distance of af Jeast a few thousand times the Larth-Sun

distance. Such a large amount of empty space made astronomers uneasy. They preferred

HELHEY

the more compact geocentric model. As we discuss further in Chapter 13, stellarp

was nol measured until long after the invention of the telescope. Even the Sun’s nearest

neighbors among the stars are @l @ distance of 270,000 times the Earth- Sun distance.

iverse may have been psyche cally comforting, bul the

ortable.

The small, tdy Prolemaic

universe is under no obligation 10 make us comf

COPERNICA

| ASTRONOMY

The Polish astronomer Nicolaus Copernicus (1473-1543) was the lirst scientist since
antiquity to advance a heliocentne model for the universe. Copernicus was a Renais-
sance man metaphorically as well as chronologically; in addition 10 studying astronomy
rder 1o study medicine and law. After tak-

and mathematics, he also traveled 10 laly &

ing minor onlers in the Church, he served in a vanely of administrative positions, His
work for the Church left Copernicus with enough time to make astronomical observa-

his heliocentric mudel in detail. By the year 1514, Copermicus was

tnons and work ot
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FIGURE 2.6 A schematic diagram of the heliocentric model. drawn by Copers
cus {note that Sod, the Sun, is at center).

circulating a bricf manuscript about his ideas among his [riends; the grand summary of
his work, the book De Revalusionibus Orbivm Coelestivm {“On the Revolutions of the
Heavenly Spheres™), was not published until Copernicus was on his deathbed, in the
year 1543,

The most radical aspect of the Copernican model was its insistence that the Sun, not
the Earth, was at the center of the solar system {(Figure 2.6), and that the Earth was both
rotating about its axis and revolving about the Sun. The Copernican maodel, however,
also had conservative aspects. For instance, Copermicus wholeheartedly cn'hr;nccd the
dogma of umilorm circular motion. One of his proudest claims for his heliocentric model
wis that it eliminated the need for equants (however, to match the observations, it sull
”CL'(IL'd ceoenines Zﬂlll L'I”l':ﬁ R’I\'\' ).

e Copernican model. although it retained cecentries and epieyeles, was concep
tually simpler than the Prolemaic model in many respects, In the Copernican model,
retrograde motion ol the planets is accounted for by the fact that inner plancts move
faster along their orbits than the outer planets do. Thus, as an inner planet, such as the
Earth, overtakes an outer planct, such as Mars, the outer planct undergoes retrognule
motion as seen from the inner planet. This is demonstrated graphically in Figure 2.7
In a heliocentric model, with the Earth being one of many plancts orbiting the Sun, it
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FIGURE 2.7 Explanation of the relregrade motion of Mars in a heliocentric

syslenm.

ancts into two 4 on their distance from the Sun

arth

o Inferior plancts are those with orbits smaller than the Earth's orbit, that is.
Mercury and Venus.

whits larger than the Earth’s orbit. Mars, Jupiter,

e Superior planets are (hose w
i the plancts

inels known at the time of Coperni

and Saturn were the sup

Uranus and Neptune and the dwarf planets Ceres, Pluto, Haumea, Makemake, :

Eris were not discovered until after the invention of the telescope.,

In the C wround the Sun, Thus, for an Earthly

“opermican maodel, the Earth s m mation
'

om a reference frame thatl 1s co-rotating

abserver, the positions of planets are measured [s

with the E Sun line. It is partcularly useful, as we shall see, 10 measure the posi

of plancts on the celest

al sphere relative Lo the Sun.

Some special positions of the superior planets relative 1o the Sun are shown in

we 2.8 Names have been given to these special positions:

« Opposition oceurs when the Earth hies between the Sun and the super ior planet
[hat 1s, the Sun and pli

arth
Lanul.

el are 1807 apart on the celestial sphere as seen [rom the

e Conjunction occurs when the Sun lies between the Barth and the superior planet.

That is. the Sun and planet are (F apat as seen Irom the Larth

e Quadrature occurs when the Sun and the supenor planet are %7 apart as seen
from the Earth. The quadrature can be either eastern, when the planet appears X
cast of the Sun on the sky, or western, when the planet appears 907 west of the

Sun.
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FIGURE 2.8 Configuraticns of superior planets. In this and lollowing diagrams,
we adope a coavention of looking down on the solar system from above the Earth's '
nocth pole.

Although nlerior planets cannot be seen in opposition or in quadrature they do have 0

two different conjunctions, as shown in Figure 2.9

¢ Inferior conjunction occurs when the inferior planet lies between the Larth and

the Sun. .;

N . . - v 2 - -4

¢ Superior conjunction occurs when the Sun lies between the Farth and the inferior ~
planet. S
When a planet is notin conjunction, it is separated from the Sun on the celestial sphere :

by an angle ¢ referred to as the planet’s elongation. Note from Figure 2.9 that an inlerior |

planet can have the same ¢longation @ at two different distances from the Earth

One of the happy results of the Copernican model is that it enabled Copernicus to
compute the orbital periods of the planets. relative 1o the Earth’s orbital period, and
compule the size of planctary orbits, relative o the size of the Earth's orbit. Let's first
see how Copernicus computed orbital periods. and then how he computed orbital sizes,

As seen from the Larth, planets undergo motion that can be described as periodic; that
15, there is a fixed time interval between consecutive appearances of a particular planctary
configuration. This tme interval, known as the synodic period of the planet, can be lound
by measuring the time elapsed between successive conjunctions (for a superior planet)
or the time clapsed between successive inferior conjunctions (for an inferior planet)

The synodic period is different from the sidereal period of the planet, which is the time

*The term “symodic™ comes from the Greek word sysmndos, meanang 3 “coming together”—in this cise, 2

comiag together of the Sun and the plane

when the planet 38 3l coajunctson.




42 Chapter 2 Emernpence of Modern Astronoms 2%

Earth

FIGURF 2.9 Configurations ol inferior planets,

conjunction, the angle # between the Sun axd the pl

the planes’s eloagation

pe
a5
pe

planet 1o complete one full circuit ol the sky relative to the fixed stars. The

it takes th

synodic period ol a planet is longer than tls s dercal period for much the same resson that =
av (as discussed in Section L.5). As a renminder,

the sidereal day 15 the Earth’s rotation px riad in the nonrotating frame of reference of the

distant stars {the sidereal frame); the solar day is the Earth’s roltation period 1 a Trame ol

eference co-rotating with the Earth-Sun line. Similarly, the sidereal period of a planct

is the planet’s orbital period in the nonrotating sidereal frame; the synodic perod 15 i is

1 period n @ frame of reference co-rotating with the Earth-Sun line.

As in equation (111, let wg be the angula velocit

v ol the Earth’s orbital motion in

the sidereal frame: let @p be the angular velocily ol the planet’s orbital motion in the

sure 2,10 shows the orbital motions of the Earth and an inferior planct:

same frame. P

for an nferior planct, @y = . The difler

HICS B

etween these two angular veld

tal motion in the frame co-rotating with the A

ity ol the plang

ular veloc

Wyp- the an

Earth-Sun line. Specilically, we see thal n
I

Wy 1 HJ,':. ne

If @yp and wg are p 1 is, il the orbits ol the Eartl | the planct are coplanar

and they orbit in the same di

W = W + )

C
Yoy 2 I V- .
s e e = b
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FIGURE 2.10 The angulur speed of the

sarth is eop: and the angular speed of an
inferior planct is wp. The difference between them is m,, ., the angular speed of the

planet i a reference that co-rogares with the Earth-Sun b

10n (2.8), Py 1s the sidercal orbital period of the Earth, £, is the sidereal orbital

period of the inferior planet, and £, is the synodic orbital period of the inferior planet,

as seen from Earth. As an example of an inferior planet, consider Venus. The synodic
period of Venus is measured to be P — 583,92 days, The Barth's sidereal orbital period

1

SYRIRS 9w .

15 Py = 365.256 days.” We can then compute the sidereal period of Venus:
. 1
1 I 1

4 T A . 0
224,70 days, (2.Y)

, }
L365.256days  583.92 days

In the case of a supenior planet, wp < @p. I we refer Lo Figure 2,11, we see that @,

15 10 the opposite sense Lo @y and @p. Equation (2.8) then becomes, for a superior planet.

j?
“svn
As an example of a superior planet, consider Mars, The synodic penod of Mars is
measured 10 be P, = TM95 days. Given the length of the sidereal period of

Py = 365.256 days. we compute the sidercal pertod of Mars 1o be

68698 davs.
256 days T79. U5 days c

In addition o permitting a determination ol a planet’s sidercal orbital period, the

Copemnican model also permits us o compute the distance of each planet from the Sun.

For an inferior planet, this computation is straightforward. We nced only measure the

Remember that doc (o the precession of the eguinoxes, the sidereal vear & slightly longer (f

year of &

an the tropical
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Sun e

FIGURE 2.11 The:

supenor planet is ep. The difference between them is e,

*

arth is an: and the angular speed

- an observer on Earth,

the angular velocity ar,,, of

inferior planet’s greatest clongation, that is. the maximum angular separation between
the planct and Sun as seen from the Earth. As shown in Figure 2,12, if we approximate
1he 1

linc of sight from the Earth to the planet is exactly tangent to the planct’s

orbat of the inferior planet as a perfect circle, then greatest elongation occurs when the

orbit. When that

happens, the an

gle Earth-planet-Sun s a right angl
£ from the planet to the Sun is then given by the relation

», as the figure shows, The distance

B/C —sinf, (2.

¢ i is the angle of greatest clongation and € is the Earth-Sun distance. This n
therefore, only gives the radius of the planet’s orbat in units of the Earth-Sun distance.

[he average distance [rom the Earth o the Sun s of such importance o astronomers

wpernmicus, like the Greek
» absolute length of

rhi

is.

the astronomical unit.'” However, he did know the relazive sizes of the plancts’ o

For instance. the greatest elongation of Vienus is f = 46°, so its orbital radius 15

B = (sin 46" ) =072 AU. 2.13)

v a similar bul shigh

‘The size of the orbits ol superior plunets can be determined b
interval T between oppos
2 }. the 2

ut by the Earth during the time interval 7 is wit. where ey is the angular speed ol

more complicated method. First, we must measure the tin

d castern quadrature of the superior ph As shown in Fig

oIC SWOM

the Earth’s arbital motion. Over the saume tme interval, the sepenor planet (assumed 10

U'\We now koo that | AL 1495978707 km.

S

b

be Mar
planet’s
shown |

angle, s

where ¢

the time
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FIGURI 2.13 Inthe time ¥ between H|“'f‘-:‘si.';

sweeps out an angle Wnfars? and the Farth sw ceps out an angle w
between these angles 18 &, with cosé = /B

be Mars in the figure) sweeps out an angle wpT. Where wp 1s the angular speed of the

planet’s orbital motion. The difference between these angles is the angle @

= [ty — tp)T

shown in the figure. When Mars is at quadrature. the angle Mars—Earth-Sun is 2 right

angle, so we have the relation
C/B - cosd, (2.14)

where C is the Earth-Sun distance and 8 is the Mars- Sun distance. In Lhe case of Mars,

the time f 7

WN OpPOSsItoNn 1o eastern quadratue is v = 107 days, Thus. the anele 15
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TABLE 2.1  Planctary Orbits 24 =

Planet? Swdereal Penod Orbatal Rados

ar Al
Lyaars) AR

Mars 1.8%81 1.524
Ceres 1.599 2.766

Jupaler 11.863 5,203
Saturn 20447 0.537

Uranus sS4.07 19,189

Neptune 30.070
Plato 24792 19,482
Heaumea 283.28 13.133

{ l... ".' \
i1 [ — — ) y
1 I 1
M /

107 davs)
686,98 days /

Ihe distar

\LJ. (2.16)

Table 2.1 shows the sidercal orbital
::L;ln

opernicus )

period and the orbital radius lor cach ol the plancts

varl planets in the solar system (ine the time of

ing those that were unknown

n this section assume that planetary orbits ane

alculanians we

Truth in advemising: the €

perfecily Greular. Although this ws o mood st approsimation, the oelals are actually ¢

s, ] what we call

the “orbigal mdius™ in Table 2.1 s ac cemamajor axas of the ellipse.




(2.16)

f the planets
1 the time of

wlay arhils are
nd whint we call

1 pModern Scientist 17

2.4 » GALILEQ: THE FIRST MODERN SCIENTIST

Both the Prolemaie and Copernican models could explain the observed maotions of

Sun. Moon, and planets on the celestial sphere. Why, then, should one believe Ul

Earth is in moton rather than the Sun? We know now that the

Farth does orbit the Sun

rather than vice versa, but direct expenmental prool of the b
wries alter the death of Copernicus

th's orbital motion was not

provided until the cighteenth century, ncarly two cen
Nevertheless. the heliocentric model came 10 be accepted without direct proof. This was

s of the planets are less compheated

partly because of its elegant sim vlicity; the maotu

in & heliocentric model than in a geocentric model. This is an apphcation of the general

. . . - 12 . . '
principle often referred W as Occam’s Razor In its typically quoted form, Oceam s
Razor states that “the simplest description of Nature is most likely to he most nearly

correct” Tn other words, unnecessary complications should he “shaved aw ay"” fror

theory. OF course. when using @ razor, it is important nol 1o cut (oo deep; Albert Linst

is said 10 have rephrased Occam’s Razor in the form “Everything should be made as

simple as possible . . . but not simpler”

In addition 1o the acsthetic appeal of the heliocentrie model’s relative stmplicity. com

pelling indirect evidence Tor heliocentrism wits provided by the telescopic observations

of Galileo Galilei { 15364-1642}, Galileo is sometimes called the first modern experimen-

» purely on the pronouncements of Aristotle, € salileo tried

in;_‘ [‘crn'

aal nhveirict SP— -
tal physicist. Instead ol 1¢

10 understand how nature works by carrying out experiments, such as swis

wl sliding weights down inclined planes. Although Galileo didn’t

lums back and forth, :
invent the telescope. he was among the finst individuals to use a Ielescope as a scen

lific instrument, The actual inventor of the telescope may possibly have been a Dutch
optician called Hans Lippershey. In October 1608, Lippershey applied for a patent on
v the Dutch

oker™ in English. The patent was denied b

called 2 kigker. or “lo

what 1

sovernment, however, on the ¢ ounds that “many other persons had a knowledge of the

invention.” Indeed. news of the telescope reached Galileo in ltaly as early as May 1608,

AWONOULSY % SOISAH

soon thereafter. he built several telescopes, each superior Lo the one before
Altho

Galileo with many impos

Vs tekescopes had apertures of only an inch or two, they provided

lution-

sh Cralile

tant ohservations. Galileo, knowing the potentially rev

. ol

ary impact of his discoveries, rushed into print in March 1610 with a pamphlet entitled

reas Nuncins (“Starry Messengzer™ ). Many of Galileo's observations were startling

1o his contemp raries:

e The Moon is not smooth and pertect. Instead, as Galileo wrole, it is “uncven, rough,

es. And 1t 1s like the face of the Earth it

and crowded with depressions and bulg

which is marked here and there with chains of mountuns and depths of valleys.”

ce and Lthat

In other words, there is not a vast difference between the Larth’s sur

of a celestial object, namely the Moon

12 Oceam’s Razor is named after Willizm of Occam, a fourtocmh-century (mar and Jopics
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FIGURF 2.14 Galileo's illustration of the four b qeht sateliues of Jupiter (the

» relative to Jupiter itself (the central disk)

four asterisks). show

Ihe phases and relative angular size of Venas, from crescem

FIGURE 2.1

to full.

v

o The Milky Way, the nehulous b

{ light that extends around the sky. actually

consists of numerous faint stars, ™ of 1t vou direct your spy-

= Galileo wrote, “an immense number ol stars immediately offer themselves

ileo put i1, “the planets p

wr as little moons.” (Unfortunately Tor astronomers, even i

100 distant 1o be re

slved with conventional telescopes, even lelescopes much
larger than Galileo's,)

" "
Hed these

h Galileo «

e Stars”” in honor of Costmo de Medici, Grand Duke of

¢ The planct Jupiter has four , bright satellites. Altho

Hites the “Medic

vomers named them the Galilean satellites. ‘The i

names of the four Galilean satellites are lo, Europa, Ganymede, and Callisto.

The Galilean satellites of Jupiter. shown in Figure 2. 14 were an indirect prece ol support

for the Copernican sysiem One objection to a hehocent ic mo

| was that 11 required

tinle centers of motion: the Earth went around the Sun while the Moon went around

This was reeanded as more complex than a geocentine me wiel in which every

thing goes around the Earth. However, Galileo provided clear evidence that there had

to be multiple centers of motion; obvicusly, the Galilean satelhies were gong aroumnd

Jupiter, regardiess of

ter was going around the Sun or around the Barth.

Cre

wh
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2.4 Galileo: The First Modern Scientist

& Eanh o |arih
(a) Copernican system (h) Plalemaic system

FIGURE 2.16 ()} The phases of Veaus in the Copernsean maxdel. {b) The phases

of Venus in the Prolemaic model

By the end of the year 1610, Galileo made another telescopic discovery that Turther
uncernmuned the Plolemaic model. He found that Venus went through all the phases that
the Moon did, from full 10 new. Morcover, be Tound that the angular size of Venus wa
smallest when it was full and largest when it was a thin crescent. The phases ol Venus.,
tllustrated by Galileo in his later woek £ S tore, are shown in Figure 2.15. Proler
in his geocentric system, had the task ol explaining why Venus should alwavs e within
46° ol the Sun il the two badies were on independent orbits around the Earth. Prolemy

managed it by saying that the center of Venus’s epicyele always lies direetly between

the Earth and the Sun (as shown in Figure 2.16h) and that the epicycle 15 big enough 1o

subtend an angle of 927 ax seen from the Larth. The geometry of this situation requires
that we see primarily the nighttime side of Venus, that is, the side away from the Sun. In
the Plolemaic system, then, we woukd always see a new or crescent phase for Venus, as
illustrated in Figure 2.1

Galileo demonstrated, however, that we see gibbous and full Venuses, as well as
crescent and new Venuses, This is casily explained in the Copernican system, as shown
in Figure 2.16a. In the Copemnican model, the sunlit side of Venus is turmed toward us
when Venus is at superior conjunchion: this is when Venus is at its greatest distance from
Earth, and hbence has its smallest angular size. Conversely, the nighttime side of Venus
is turned toward us when it is al mferor conjunction, when it is closest to Earth and has
15«

its largest angular size.’” This is in accord with the observations of Galileo,

Tantalzzangly, when Venus is 1
be resodved by the humas ¢ve. 15 our o bet be 2 s 2 bt larger, the piases «

woukl have bacn saen before the investiona of the telescope, thus shienng the course of istronomical hastor
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KEPLER’S LAWS OF PLANETARY MOTION

v f

As increasingly accurate abservations of planctary motions were made, the i

NS l.'ll b |'.
the Plolemaic and Copermican models beciume more evident . Tycho Brahe {1546-1601)
was probably the greatest astronomical observer prior to lhc invention of the telescope;
it was his observatons of 'wl.l.".c'..‘u'-. motions that both revealed the nadequacy ol the

Copernican system s Prﬂ' ided the necessary data for calculating the true nature of

planctary orbits around the Sun. Tyvcho was a xnrx\h aristocrat and recerved large sums

of money from the King nI Denmark to sel up an claborate ohservatory on the island of

Hven, near Coper r more than 20 years, Tycho observed the posiions of plancis

arcminute, Interest

and stars with ) 1zly. Tycho did not believe that the
heliocentric model was correct. He noted, as did the Greeks before him, that the strs

do not show parallax. The absence of parallaxes larger than | areminute implies that the

nearest stars must he farther away than a few thousand AU, given a heliocentric solar

rhi this distance v

system, Tycho thos implausibly large and thus devised 2 compound

system in which all the planets other than the Earth went around the Sun, while the Sun

chited the Earth, carrying its entourage of plancts along with it.
In the year 1599, alter a major [

post as Imperial Mathematician to the Holy Roman Emperor in Prague. There he hired

630). Initially, Kepler was frustrated

ling-out with the [lmv-h king, Tycho accepled a

a new assistant named Johannes Kepler (15711

by Tycho's reluctance 1o share his data. However, Kepler soon had complete access
ived in

to Tycho's observations; in October 1601, less than two years alter Kepler <

Prague

cho died, and Kepler was appointed his successor as Impet ial Mathematician

By using l\._h.\ < phservations of the planet Mars, and by doing several ye ars” worth
calculations, Kepler was able 1o formulate a mathematical description of its orbar, and
by extension, the orhits of other planets. His basic findings arc eacapsulated in Kepler's

laws of planetary motion

1. Kepler’s first laws: Plasers travel on eliiptical orbits w ith the Sun at o
/

properties of the closed curve known as an ellipse arc best deseribed by explioming

how to draw one ( Figure 2.17). Take a picce of string and tie cach end to a pin.

Srick the pins inte a picce of paper, separated by a distance less than the string’s
I I 3 !

length. Use a pencil to stretch the sering taul and draw a complete, closed curve

this is an ellipse. The two pins are located at the foci of the ellipse 19 Expressed

he distances

mathematscally, the ellipse s the |

cus of points for which the sum of

1o the foct is a constanl :L‘Lllhl: to the length of the string, in our graphic example). It

the pins are moved closer together, fora given length of string, the ellipse becomes
more nearly circular; if they are moved farther apart, the cllipse becomes mone
flauened.

The longest distance across the ellipse (wl

y passes through foct) s
called the major axis. The shortest distance across the ellipse, passing through
the ellipse's center. is called the minor axis. The semimajor axis is half the mar

axis. and the semiminor axis 1s half the minor axis. The eccentricity of the ellipse

“Foci™ 1 the plural of the woad “focus™

S
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2.5 Kepler's Laws of Planetary Motion
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FIGURE 2.17 ‘The properties of an ellipse

is the distance between the foci divided by the leagth of the major axis, If the foci
comcide, then ¢ = 0, and the ellipse is a circle, The other limiting case, ¢
represents the case in which the foci are separated by the full length of the string.
It was quite a feat for Kepler to discover the elliptical shape of planctary orbits,
since most plancts have orbils with small eccentricity. OF the plancts known to
Kepler, Mercury had the largest cccentricity, € = 0.21: all the others had ¢ < 0.1

Kepler's second law: A line drawn Srown the Sun to a pla
areas in equal time intervals. This law provides a quantitative description of how
the orbital speed of planets changes with their distance from the Sun: not only is
motion nol circular, Kepler discovered, it doesn’t have uniform speed, either. The
second law is graphically demonstrated in Figure 2.18. A mythical planet has its
motion plotted during two time intervals, each

10 days long, separated by half the

planct’s arbital period. The two wedge-shaped areas sw ept out by the planet-Sun

line are of equal area, even though they are of different shape. Kepler's second
law implies that plancts move most rapidly at perihelion, the point on their orbit
closest to the Sun, and least rapidly at aphelion, the point farthest from the Sun.
As we show in Section 3.1, Kepler's sccond law is simple consequence of the
conmservation of angular momentum.

Kepler's third law: The squares of the sidereal orbitad periods of the

It Waners are

proportional (o the cubes of the semimajor axis of their orbits, Kepler's third law

Y Sometimes you hear “aphbelion”™ prosaunced s “ap-helion,” sometines as “at-felion ™ Both pronuncstions
can be found i reputable dictionaries.

wr sweeps out equal
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FIGURE 2.18 ‘'The area swept out by the planct-Sun line in exch 10-day interval

is identical

ematical notaton:

can be expressed more compactly in my:

2 )
' g N 3
" =Aa, 12,

where £ 1s a planets sidereal orbital period, @ is the length of the semimajor axis 2.6.1
the Sun,

of its orbit, and K is 2 constant. For objects orbiting
K yi© AU, (2.18)

~ 14 "
1 » 2. 19) shows

A plot of orbital period versus semimajor axis (like

at all planets m the solar system, even those unknown 1o Kepler, lollow his thind

law. In addition, Figure 2,19 shows that the Galilean satellites of Jupiter also obey

'ZI_\:.' AU rther than K = I}": AU

equation (2,17), but with K == (¥

2.6 = PROOF OF THE EARTH'S MOTION

Although Galileo’s discovenes convinced many individuals that the beliccentric model

was correct, delinitive prool that the Earth revolves around the Sun and rotates on its

later, The rotation of the Earth about i1s axis wis proved

axis wasn’t provided until much
by detecting the Coriolis elfect: this was done most famously by Jean Foucault, using
what is now called a Foucault pendulum. The revolution of the Earth about the Sun was

proved by detecting the eflect known as aberration of starlight: later confirmation came

from measuring the annual parallax of nearby stars
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FIGURE 2.19

plancts orbiting the Sun (circular dots) and for the Galtlean satellites orbiting Jupiter

Orbital period P versus semimajor axis @ for planels anxd dwart

(syuare dols).

2.6.1 Rotation of the Earth

When we measure the trajectory of a projectile (such as a bullet or i thrown ball), we are
measuring the trajectory relative o the Earth’s surface. However, because ol the Earth
rotation, any set of coordinates fixed to the Earth’s surface 15 ll"dlll’l" with an angular
velocity @. The magnitude of @ is @ = 2x day ' 2 7.3 x 107% 57!, and the direction of
@ is pointing from south to north, mrallcl to the Earth’s rotation axis, By watching the
motion of the projectile, we can detect the Earth’s rotation its trajectory in the Earth's
rotating frame of reference is subtly Lhil'crl:nl Irom what it would be in a nonrotating
frame ol reference.

To quantify the difference in trapectones, let’s start by writing down the relevant
cquations of motion. In a nonrotating frame, the motion ol an object is famously given

by Newton's second law of motion:

(2.19)

where a 15 the measured aceeleration of the object, F is the net foree applied, and m s

the object’s mass. However, the equation of motion is different when the acceleration a

is measured in a frame of reference rotating with angular velocity @:

a=F/m+2(vx®)—ox(®xr), (2.200
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re v is the object’s velocily and ris the object’s position, both measured in the rotating

frame ol reference.
3 ()

The last term on the right-hand side of 2200 1s called the centrifugal

acceleration. The centrilugal acceleration points away from the rotation axis, and his

a magnitwde
b

' . . y -
o w X {w XT) =W K, L& b

where R is the distance of the object [rom the rotation axis of the frame of
»with the E
R

rth's rotation axis move in diurnal circles of physical radius K m

*lerence.

>

jects al a distance £ from ihe

In other words, when we s arth, we sce o

radius R with uniform angular speed e requires an acceleration o

n in a circle of

. For objects

ncar the Earth's surface, the centrifugal aceeler is arcatest at the equator, wh
R=~=64x=x10°mis 1l 1o the Ear

he eguator ol

Ihis implies a centrifugal acecleration

ncar i
Oopag — W R={T3x 10 75 ° (6.4 x 10°m) =0.034ms™ (2.22)

[his is Ntz ation. In the jargon of auto advertisements, it would take

vou from “zero to sixty mph™ in 13 minutes, More relevantly in this context, dg., »

ravitational acceleration at the Earth™s swrface, g =9.8ms . In

small compared 1o the g

rinciple, traveling [rom the poles to the equator should reduce your acceleration toward

the Eanly’s center, and thus reduce your weight, However, the ractional weight loss will

; N vy?
Y {h0s,
S

d the Coriolis

ntist named Gustave Cono

> term on the nght-hand swle ol equation

. W lll'

acceleration, or the Cortolis effect, alier a French scic

ms of motion for a rolating Irame in the year 1835, It is sometimes

wenient to think of the Cori

published the cc

computationally c lis acceleration,
a = 2V % () 12.25

“Coriolis foree™ equal to 2n(v x @). In truth, however, no

as beinge due 10 2 hel

physical force is being

e

y the particle; the Corolis acceleration results from the

lerence

fact that the particle is being observed from a rotating. and hence accelerated, «
Y Y2

3) tells us that the Cori

always perpendicular to the direction of motion ol the pi

frame. The cross-product in eqguation is acceleration

tcle, When the cross-product 5

worked out in det 1s seen that 2 moving particle is deflected to its right in the northern

L de Istrates.

¢ft in the south

hermisphere and to 1 "

hemisphere as 19g

Ihe magnitude of the Conolis aceeleration is

-~

N -

versin &, (2.24

where © is the angle between v and w., Thus, the Coriolis effect is maximized when

the particle’s motion is perpendicular to the Earth’s rotation axis; it vanishes when the

particle™s motion 1s parallel 1o the rotation axis. For other directions of molion, we may

make the rough approximation

&l
0
afl
[
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FIGURE 2.20 In a reference frame co-rotating with the 1zarth, maving particles

are deflected 1o the rght in the northem hemisphere, and to the left in the southemn

$O!SAH:}_

bemisphere

w Coriolis
c1ohis, who If a particle is in flight for a time Az, its velocity will be altered by a fractonal amount
sometimes

(726

hus, the change in the particle’s direction of motion will be small as lone as its time ol

(2.23) ’

AWONOMILSY =

1ght s much shorter than

{

OWEVer, no
ts from the : l
| reference w  ~ — days

¢

14,0000 =

leration is

cproduct 1s Usually, when a ball is thrown or a bullet is fired, it reaches its target within a few seconds,
e northern so the Coriolis effect is neghgible. However, the Coriolis acceleration can significantly
trates. affect the ballistic trajectory of projectiles when the time of Night is su heiently long.

During the projectile’s Might, it will be dellected by a distance

i~ A | : | .
(2.24) Ad :.‘..,,'.\L.'," ~ — o (Ar)-. (2.28)

ized when
s when the
n, W may

(o the right ol its inital trajectory in the northern hemisphere and o the left in the
southern hemisphere, During World War [, for instance, the German army used an
immense artillery gun to bombard Paris from a distance of ~ 120 km. The Paris Gun
had a muzzie '.L'El?\':lf- r~l.6kms :: shells were s¢ent on a ;‘-..lllll'\"“t.' “'Jil"'- 1ory wilh 2

maximum altitude of ~ 40 km and a time of Might Ar ~ 170 s. This led 10 2 deflection

—— T e ———————— e r—————————— > r———— e ——— —_
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FIGURE 2.21 A Foucault pendulum at the Earth’s north pole 26.2 R

to the right of where the gun was aimed.

The Coriolis acceleration also affects wind patterns. As i moves inwanl toward

an area of low pressure, the ( ariolis acceleration causes it to swerve to the right (in
the northern hemisphere of Earth), and sets up @ counterclockwise circulation, As a
e counterclockwise: conversely,

consequence, hurricanes in the northern hemisphere rot:

circular stoems in the southern henmisphere rotate <l

wekwise. Urban legend Lo the contrary,

Wi werclockwise in the northem

er draining [rom a sink doesn’t invariably spiral cour

hemisphere and clockwise in the southern hemisphere. Drmning a sink takes much less
tine than formmng @ hurric

ane; during the time it takes a sink to emply, the Av caused by

1 of the eddies that form as you

the Coriolis ellect remains small compared o the s
fill the sink and wash your hands.'®
A celebrated demonstration of the Conolis effect is the Foucault pendulum, first

demonstrated in the year 1851 by a French scientist named Jean Foucault, A Foucault

peadulum is nothing more than a long pendulum suspended from a ball-and-socket

overhead, so it s free 0 swing in any direction. Although Foucault set up his own

pendulum in Paris, it is caswer 10 visualize the principle behind the Foucault pendulum if

we imagine onc installed at the Barth’s north pole | Figure 2,21 ). If we set the pendulum

oscillating, 11 will continue 10 oscillate back and forth in the same plane, @ viewed

by a nonrotating ahserver. Thus, a sidercal nonrotating obscrver would report, “The

"In ni. A. H. Shapiro of MIT

1 chassic expenn

N managed to desect the L anolis ctfect hy fillarg

Shaet 1o 24 hours 8 coastant lemgerur,

4 &-foo diameter tank with water. letting 4 sit co

then camelully pulling out the soall. centrally locared drain plug. Under such controlled condations, the winc

, (INaure, 1962, vol. 196, p. 18D

did indeed sparad countercloc s own the O
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2.6 Proof of the Larth's Maotion L

Farth rotates counterclockwise (viewed from above the Earth's north pole), completing
one rotation in a sidercal day; the plane of the pendulum’s oscillation is nol rolating.”

However, an ohserver co-rotating with the Earth would report, *The Earth is not rotating

of relerence: the plane of the pendulum’s oscillation is rotating

wilh respect 1o

«} from above the Earth's north pole), completing one rotation in 2

clockwise (vie
sidereal day.”

*r than the north or

Analyzing the rotation of a Foucault pendulum i locations oth
south pole requires a more detailed analysis of the Cortolis acceleration of the pendulum
hob: the result found is that the pendulum’s plane of oscillation rotates at a rate 2w sin
sidercal dav. where ¢ is the Iatitude at which the Foucaunlt pendulum is

radians per
located. (This accounts lor the popularity of Foucault pendulums at high lattude sci

muscums: near the equator, the excruciatingly slow rotation of a Foucault pendulum s

a less visually exciting demonstration of the Earth’s rotation

Revolution of the Earth

[he aberration of starlight was first detected by Jean Picard in 1630, bul at v

explained unul 1729, by the astronomer James Bradley. The aberration of starlight 1s an

pparent posiiions ol stars on the celestal -;"lu'h‘ 10 be deflected

that causes the apy

eliect

NSAH

40 Ld3A FHL 40 ALMIAdOU

v to explain the aberration

firectuon of the rver's motion. The common ar

er with an umbrella; even if the rain

ight involves running through a rainsho

is falling straight down, you have to tlt your umbrella in the direction of motion n

order to keep your head dry, Similarly, in order to catch photons from a distant star, you

have to uh vour telescope in the direction of motion {Figure 2.22). Photons travel at
a large but finite speed, ¢ = 3.0 x 107 kms ' The orbual speed of the Earth averages

AWONOMILESY &) ST

Ty sl

L be tilted in the dirvction ol the Earth’s moton

”(JLJRF .2..’2 Te Il'\u.';l.'.‘-

by an anele & =2 ¢/ to assure that photons arrave at point P at the same fime as
- )

bottom of the elescope.

e — R
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FIGURE 2.23 Definition of 1l

2 =298kms = 107" ¢ Il your telescope is 1 m long. then during the L 1t 1akes
light 10 pass through the telescope, the Earth’s motion will have translated the telescope
through a distance of 0.1 mm. Figure 2.22 shows that the angle through which the

telescope must be tilted is given by the relation

Since the Earth's speed is so much smaller than the speed ol hight, we may use the

small-angle approximation:

v 298 kms

¢ 30x 1P kms! \

Aberration of starlight causes the positions of stars in the sky to follow an annual path

that 15 the projection of the Earth’s motion onto the sky: an cllipse ol sermimagor axis

we of the star from the

20,5 and a semiminor axis 20,578, where f is the angular dista

ccliptic.
" ; . . . 21
Stellar parallax was introdeced earlier, on page 37, when we emphasized the facl
that observers couldn’t detect it prior o the invention of the telescope. In fact, even
afier the invention of the telescope, it took a long tme before stellar parallax was lirs] 22
measured. It wasn 't until 1838, more than two centuries after the first telescopes, that the
astronomer Friedrich Wilhelm Bessel announced that he had finally measured the annual
parallax of a star. Formally, astronomers define parallax 7" (Figure 2.23) as the apparen
displacement of a star, in arcseconds, due (o a change in the position of the observer b
| AU perpendicular to the hine of sight to the star.'” Although parallaxes are defined in
terms of a | AU displacement, the actual baseline used for parallax measurements can s 3
. : » : : 23
be as larpe as 2 AU, by using observations six months apirt a1 the appropriate times of
year, From ire 2.23, we see that the distance o from the Sun to another star is simply
related to the star's parallax:
o -
d (2.52)
lan T
d confusion with the imatonal number ¥ — 314139265 . .. by usang the double pame, peatly M Ng
llaxes generally messured i units of arcsecomds the px

g us thar pae
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Problems

Using the small-angle approximation, and converting the parallax from radians to
arcseconds, we find that

©larcsec] \ o orad )

The distance a1 which a star has a par

allax of exactly 1" is known as the parsec, shor
for “parallax of one arcsee.” The number of AU in one parsec is equal 1o the number

of arcseconds in a radian: 206,265, The nearest star to the Sun, Proxima Centauri. has
a parallax " = 0.76", and hence is at a distance o — 270,000 AU = 1.3 parsecs. Stellar
parallax causes the positions of stars on the celestial sphere to follow a path that is
the projection of the Earth’s orbit onto the sky: an ellipse with semimajor axis 1" and
semiminor axis 7”8, where 8 is the angular distance of the star from the ecliptic.!® It
took & while for stellar parallax to be measured, but when it was, it confirmed two initially
controversial assertions made by Copernicus. First, the Earth goes around the Sun, rather
than vice versa. Second, space is big (really hig).

PROBLEMS

Over the course of the vear, which £ets more bours of daylight, the Earth's north pole
or south pole? (Hint: the Earth is at peribielion in Jamuary.)

On 2003 August 27, Mars was in opposition as seen from the Earth. On 2005 July 14
(O87 days later), Mars was in westem quadrature as seen from the Earth, Wlen was
the distance of Mars from the Sun on these dates, measured in astronomical units
(AUY? Is this greater than or less than the semimajor axis length of the Martian orbit?
You may assume the Earth's orbit is a perfect circle, (Hint: the sidereal period of
Mars 15 also 687 s,

In the 16705, the astronomer Ole Remer chserved eclipses of the Galilean sarellite
fo as it plunged through Jupiter's shadow once per orbit. He noticed that the time
between observed eclipses became shorter as lupiter came closer 1o the Earth and
longer as Jupiter moved away. Remer calculated that the cclipses were observed
17 minutes earlier when Jupiter was in opposition compared (0 when it was close
conjunction, This was attributed by Rumer to the finite speed of light. From Remer's
diatzs, compute the speed of light. firstin AU min * thenin ms—'.

" Nate thit the abermtional shift of 20.5%. whach i ndependent of the star's dissance

is mch gregler than
the parsllactic shift for even the ¢ warest stars, whach hve » 05"
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Isaac Newton (1642/3-1727) was born in rural England: his birth date was 1642 De-
cember 25 according 1o the Julian calendar (still in use in England at the ime), bat 1643
January 4 according to the Gregorian calendar. When young Newton proved to be incom-
petent at managing his family’s farm, he was sent o Cambridge University and stared
to thrive as a scholar. [n 1665, the year in which Newton earned his bachelor’s degree, an
outbreak of the plague closed down the university, and Newton retreated to his lamily s
farm and began to think —very hanl. The period when the university was closed was
Newton's anuus mirabilis, during which he discovered calculus, formulated his three
laws of motion and his law of universal gravitation. and performed ground-breaking
experiments in optics. Much of the remainder of Newton™s long life was dedicated 10
developing the ideas he had in this burst of youthful creativity,!

Newton didn’t publish his Laws of motion and law of umversal gravitation until 1687,
when his book Philosophiae Naturaliy | rincipia Mathematica (“Mathematical Princi
ples of Natural Philosophy™} was published. The laws of motion can be summarized as
follows:

I. An object’s velocity remains constant unless a nel outside force acts upon il

2. 1If a net outside force acts on an object, its acceleration is directly proportional 10

the force and inversely proportional 1o the mass of the object. In short, F — ma,
where F is the outside force, m is the mass. and # is the acceleration.

3. Forces come in pairs, equal in magnitude and opposite in direction. (As Newton
et Actioni contrariam semper er aequalem esse reactionem, or “Every action
has an equal and opposite reaction.™)

Newton's law of universal gravitation can be concisely expressed in mathematical form.
Suppose that two spherical objects, of mass M and m. are separated by a distance .

"He also pertammed muny akehemical expenments while wying (o systematize chemistry i the wiy he dud
physics, mol 1o mention writing reans of theological works. becoming Master of the Roval Mine, and serving
s peesident of the Royal Society for mearly a quaner <entury
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(The distance » is measured between the centers of the two objects. ) Newton's Taw tells

us that the gravitational attraction between the two objects is

GMm
— (3.1)

where G. called the gravitational constant, 15 a universal constant whose value is
-T y | ] ) ) 1 { .
G =667 x 10 ""Nm- kg = (where N stands o

wion).” The negative sign in cqua-

n
ton (3.1) 1ells us that gravity s always an attractive lorce,

DERIVI!

G KEPLER'S LAWS

Newton derived the lorm of equation (3.1) by requiring that the force of gravity result

in planctary orbits that obey Kepler's laws of planetary motion. Newlon was

problem in the difficult direction: he deduced the form of the law of gravitation starting
from the observations. Since we aren't as smart as Newton, we will take the casier direc

h

tion in the following section; stanting

Newton's law of universal gravitation, we'll

show that Kepler's laws follow as a consequence. Although 1t may seem numerically

inconeruous. the derivations will flow more smoothly if we begin by deriving Kepler's

second law, then co on to the hirst and third laws

Kepler’s Second Law

Gravity is an example of 2 central force. delined as o foree directed straight (o

away [rom some central point, with & magnitude that depends only on the distance r
from that poinl The oray itational force Jua ifies as a central force because the force F
actine on the mass m always points toward the mass M (the central point of the foree),

-

nal force is o 1/, where » s the separati

and magnilude of the gravitat

Iwon

sses.” While analyzing the motion of a particle responding to a central foeee, itis
convenient to he able to switch from Cartesian coordinates 1o polar coordinates

In a Cartesian coordinate system (Figure 3.1), the unit vectors along the x, v.and z

axes are 1, ), and k. respectively. Suppose we choose our Cartesian coordinate axes such

that the Larger mass M lics at the onigin, and the position r and velocity v of the smaller

mass s lie in the xv plane, {For the sake of concreleness, let’s call mass M the Sun, and

mass m a planet, :

hole and 2 star—you name it.) The planet’s position (x, ¥} can now be expressed in pola

coordinates. where the polar coordinates (r, ) are related to the Cartesian coordinates

(x. v) by the relations x = » cos © and ¥ = # sin @, In polar coordinates, as illustrated in

Ny the farce reguired to accelerage | kikoprum #l one meter per secoad per sooond

ecquivalent o 3.6 ouness, o abou the weight of & sl apple

The elecrrastatic repulsion o attractsan betaeen two Charped poetiches 1s another < samnple of 3 oentral foroe

ol
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and their cross product (or vectorn pre xduct) s
| 1 ] k

r=@ cos i sin i () | Kicos= ¢ 4+ sin~ &) k. |

ad
N

smé cosé )

thus demonstrating that ¥ and @ are mutually orthogonal as well as being orthogonal to

the = threction.
3.2) and {3.3), we sec that

K, the unit vector in

From cquations |

|"|" " 57 - ' -
- = —(1cos i+ )sin ) - 1sind +jeost) =0 {3.6) v
il di ' Frow

can
and

.."." d ' n Ar'e - y
—_ (—1sin# 4 Joos ) = —1cost! Jsmnff = -r (A
J J
l.l" Gy

« 1o find the rate of change of the unit vectors rand & £

We ¢an then apply the ¢h

dr drdf -d8 L ang
— — . 18 <
dt de dt dr

and

ul';-’ :I'l) '_.""

(7). dav dai

lircction, not in magmiude

Note that since © and ‘

The velocity of the planet can be expressed in polar ¢

rdinates as

v, r+ 1,8, (3.10

dr ol dt di
where s
at s
I.l' y -
i (3.11) nle
al /
4

is the radial velocity and bri

.!“I
" . : D}
I r— | &)
i

is the tangential velocity. wh

r momentum of the planet is defined as Fig

The angu

L=r¢Xxp, (3.13)

aneular momentum is

where p = mv is the linear momentum. The rale of ¢
then

dv - ;lﬂ

e My + T X pi— (3.54)




Jenving Kepler's Laws

onal 1o

FIGURE 3.3 1 tions of a planet during 1 short time interval A

From Newton's sec of moton, we know that mdv /dt — l'.'_'l'llu\.t

=in be rewnitten as

19 However, v x ¥ = 0 (that's just a vector identity), and for a central
ana ¢ . A - - . y ' . 24
rand thus F x rocr x r = 0. We conclude that for gravity or any other central for

angular momentum is conserved

moton ol an object moving under the influence of @ central force is confine
= [he conservation of angular momentum is eguivalent 10 Kepler's second
srtucie. ) e A &
: demonstrate that this is true, we use eguation {(3,10) 10 write the angular momentum

explicitly as

4

ne tangennal velocity, R rng o Figure 3.3, consulder a planet of mass m:
: ) ! L

5

[, 101 at a distance # from the Sun, which has mass M. During a brief time
I Az, the planet moves a distance v, Ar in the tangential direction and a distance
A in the radial direction. The area AA swept out by 1he planct—Sun line dur g Lhis
briel interval can be approximated as the sum of two iriz

N Ar ).

the two terms represent the lefi-hand i 1gle and the right-hand trang

.. - = 4 , g . . " 11
Figure 3.3.7 Inthe limit v, Ar < v, the r ght-hand triangle is vanishingly small compared

10 the lelt-hand triangle, and the area swept out ¢can be lurther simplified as
: | |

nium is

i s A we are looking o the specific case 1, = 0. but performiag o time reversal will vield the cine

(3.9) Note that the direction as well as the magnitude of L is constant: this tells us that the

OIS

AWONOMISY = S




3.1.2

rate at which the planct—Sun line sweeps out area can then be wrilten

However, since we kno

" N1 e ~
non (3200 m the form

™

out arca. In other words, we have demonstrated i

it Kepler’s second |

a hody acting under any cent

force, not just the force of gravity

Kepler’s First Law

[odemonstrate that Kepler's fi

we will

s M (the Su

an cllipse with the larger

rst law follows from Newton's law ol umiversal gra
ve to demonstrate that the trajectory r(6) of the mass o (the planct)

at one focus. Using equations

»

(3.17), we can rewnic cqua

(3,21

L. and s are constant, so is the rate dA fdr at which the planet-Sun line sweeps

w will be true fo

vilalian

stitutes

¢

(2 19 and
LG A

(2.17), we can wrile the angular momentum per unit mass of the orbiting body as

i ars

v re—
y

nl ol

which 1s constant lor any ¢

al foree. IF the force acting on the mass m is g

then from Newton's law of universal gravitation and second law ol motion,

. GMm . dv

K ——— = m—
” VJI.I
The orbital acceleration under the inlluence of gravity 1s then

By combining cquations (3.24) and (3.25), we hind

. - : th Annatio 17 wes e
ng this equation with equation (3.22), we see

ravitational,

_‘._-_ﬂl
(3.24
(3.25)

leration of the planet is



(3.20)

Wrle equ

INC SW ceps
be true for

ravitalion,
constitules
(3.12) and

: planct is

(3.26)

Dernving Kepler's Laws

FIGURE 3.4 ‘Time s = 0 corresponds 1o perihelion passage. with the planet

crossang the v axis with its velocity in the positive v direction

Integration of this simple different

{3.28)
where € is a constant of integration that depends on the initial conditions of the orbiting
planct. We may choose the initial conditions for our own convenience. Let's choose the
time ¢ = {} 1o correspond 10 a peribelion passage of the planct, and orient the axes s
that perihelion passage occurs on the positive x axis (Figure 3.4). With this choice of
coondinates, ¥ and 8 both point in the v direction at ¢ = 0; thus, we may write € = ¢j,
where ¢ is a constant. Equation (3.28) is then
;

-y ¢ l“.
GMm .

We now take the dot product of this equation and the unit vector §:

y A - -
——V-0=0.0+¢j-0.

GMm

To simplify the right-hand side of equation (3.30). we use equation (3.3) to find that

B ] cos . To xﬁ:!l;‘l“l':\ the lefi-hand side, we wrile

! P)" [I".l' { "."'! i) = P,.

But, since equation (3.17) tells us that my v, = L, we may wnte

-
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Chapter

Circle Ellipse

Parabala Hyperbola

FIGURE 3.5 Conic sections demonstrated by slicing a conc

2y haack into equation {3.30), we find a relationship between s

and @ for fixed values of M, m, [, and e

Substituting cquation (3

r
| 4+ e CcOsH, '.:..‘\.::
; 3
GMm=
which can also be written in the form
’a
L - 1
- - (3.34)
~ag "
GMm=(1 + ecosd)

Equation (3.34) is the equation of a conic section in polar coordinates; as such. it provides

a sencralization of Kepler's first law.

a cone with a plane, as illustrated in

Conic sections can be obtained by shel

is perpendicular o the cone’s axis, then the conie section 1s 2

Figure 3.5, I the |

¢
H ¥ 3 ) . at a cirele cormne wndd v1 . T " {) - 4
circle; from cquation (3,34}, we see Lhat 2 circle cormesponds 1o the special case ¢ = (), and
hence r — L2/(GMm?*) = constant. If the slicing plane is tilied from the perpendiculir

ion obtained is an

Ie of the cone. the conic sex

by an angle less than the half-opening

» |-!:mc is uled

l‘"ipSC: this t'l‘:ln.'.\[\'-lf'\i\' Lo the -.]‘l'o..'z..x.. casel) < ¢ <« I,.' When the shicin
al to the half-opening ar

of the cone,

C

from the perpendicular by an angle exactly
the conic section resulling is a parabola; this is the special case ¢

arger angle. the conic section that results is a hyperbola,

Final |:. . WICh

the slicing plane is tilted by a

encounierad while discuss

e as the eccentncily ¢ that

s, the pamuneter » in exquanlion 43 34115
|

cllaptacal arbits in Sectioe 20, that is. e distance between toct divided by €

major axis leog!




belween r

il provides

ustrated in
eclion 15 A
¢ = (), and
pendicular
ained is an
me s tlied
f the cone,
ally, when
hyperbola,

ile descussing

h.

1.1 Denving Kepler's Laws

FIGURE 3.6 An cllipse of semimajor axis a and semiminor axis b

which has ¢ = 1. Kepler's first law is thus a special case that deals with closed orbits: that
|

is. orbits with ¢ = 1, which form closed curves (ellipses or cireles). The basic physics of
aravitation, however, permils open orbits as well that is, parabolic or hyperbolic orbits
withe = L

We have blithely asserted that the parameter « in cquation (3.32), when it lics in the

we () < ¢ < 1, is precisely the same as the eccentricity of an ellipse. defined as the
distance between the foc divided by the length of the major axis. It is time to support
that assertion by looking at the properties of ellipses i more depth. In Figure 3.6, an
ellipse is shown along with a set of Cartesian coordinates: the origin of the coordimates
is the center of the ellipse; the x axis lies along the major axis of the ellipse; and the )
axs lies along the minor axis. We also define a system ol polar coordinates centered on
one of the foci. Let's call the focus at the origin the principal focus and require that it
he the focus where the Sun is located, if the ellipse is reganded as a planctary orbit, The
angular coordinate # is measured counterclockwise from the x axis in the manner shown
in Figure 3.6, The semimajor axis has length a and the semiminos axis has length b e
ol the foci is displaced from the origin of the Cartesian o« srdinates by a distance ae
arbitrary point on the ellipse is displaced by a dis r from the principal focus and a
distance r' from the other focus; the basic property of an ellipse is that r + ¢ is conslant
By considering the two points of the ellipse lying on the x axis {x = Zxa, vy = ), we find
that r + ¢’ = 2a. It also follows that the peribelion distance, if the ellipse is reganded as
a planctary orbit, is ¢ = a(l ~ ¢) and the aphchon distance is @ =a(l + ¢)

Consider the point of the ellipse that hies on the positive v axis, where r = r’
as shown in Figure 3.7. From the Pythagorean theorem, as applied to the right trian

-

gure, we find that &~ + (ae) Fe.Orsmce r —a,

drawn in the |

AWONOMLEY 7 SO




-

70 Chapter 3 Orbital Mechanics

=1 . ’
4 o —_— — R
(' | X
|
|
|

« the semimajor axis a, the semiminor axis

FIGURE 3.7 ‘1% relationship amoe

the cecentricity e.

between the ax

s¢ Irom cithe

f all points on the ¢l

prove this, consider an arbitrary poal

‘us is equal 1o the semimajor axis length @ 1o

on e L':“P_\L‘, Pix. v), and its reflection across il

vy axis, P'(—x, v). as shown it

Figure 3.8. The distance [rom point £ to the locus on the positive x axis is r. By

symmetry. the distance from the complementary point 8

O alve

(o the focus on the p

¥ axis is 77, where »7 is the distance from point 22 1o the focus on the negative X axis. The

nts from the focus on the positive x axis is then

average distance ol the two pol

B
r r = 117
I o .
o) 1
Since this relation ho rall (2, Py pairs, dless « ¢ choice of P, 1018 true tha

the average distance (r) [rom the focus over the eatire ellipse 15 a.

Let us now deseribe the ellipse in terms of the polar coordinates (r, 1), wh

principal focus and ¢ 1s the polar angle measured counterclockwis

distance trom |t

from the positive x axis, as shown in Figure 3.9, (When the ellipse re
1

esents an orbi

aure that we can draw o tnangle

= & is called the true anomaly,) Note |

the
L [ )

from the principal locus a1 r = 0, to an arbitrary point {7, #) on he ellipse, to the othe

focus, then principal locus. The internal angle of the vertex at the principd

focus (as shown in | re21Nisx - H hus use the law of cosines (o wrnile
o r= 4 (2ae) ~_-'nl‘4t_-"- T ) (3.38

Using the 1

r y 4 "1' & (I CONT




tricity.
(3.36)

 either
v point
Wi in
r. By
ositive
5. The

¥
"
-

e that

- 1s the
Kwise
| orbil,
1angle
» other
ncipal
vrile

2 200
(3.38)

(3.39)

FIGURE 3.8 The point Pix. vias at a distanee

JAIS

FIGURE 3.9 Ancllip:

} l-,'-'.'\ CVver, Iro

(squaring cach side of the equation)

Since the right-hand sides of equations (3.39) and (3.40) arc equal, this tells us

nd a distance ¢ from the other focus

n the definition of the ¢ s

¢, we know that »' = 2a — », which yields

- -~
) . 0 1 DOsSILING
el ot P X
]
L slangy n the )

% In polar co

AWONOUILISY R SDISAH~
40 Ld30 IHL 40 ALN3dOMG

ordiniutes
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Chapter 3 ( rhital Mechanics

anging, we find

After dividing by 4a and doing a bil ol reg

This equation for r a5 a function ol @ 1s 1

wilh the onigin at one LoCus.

v

s law of umiversal gran

the shape of an orbit if Ne
jons (3.34) and (3.42) tells us that ymentum L. of
motion is related 1o the size and shape of its orbit b

Lo

J -
- A
T O n'u" el - )
m
Since I. = mrv,. this relation can also be written in the form

ot = GMa(l ~ €%).

n a planet is at penhelion, its ve ocity ise

from the Sun is ¢ — a(1 - ). This imphes that

L 4 ! l'_j

A\ similar analysis ol
tangential {v,, = ¥y), tells us that

o

3.1.3 Kepler's Third Law

Kepler's second law (equation
planet-Sun line is a constant, L/(Zm)

the arca of the ellipse, given by Lhe standand formula A

period, then, we may wnle

ralis i
e
P <

king the substitution h* =u

ation and m

By squanng this equ

W the planet’s speed at aphelion, where 1ts velocity

Tab, Forone e

(3.42)

juation for an ellipse polar coordinates,
[ This is equivalent in Lorm 1o cguation (3.34), which gives
itation holds true, Comparison of

a planet’s orbital

(3.44)

oential (v, = v, ), and its distance

or a planet at peribehon,

1s also I_'H!'I.'t"

3213 tells us that the area swepl out per unit time by
The area swept oul in one orbital period, P, i

nplete orbital

(3.49)

Sin

we

or

wi

¢

“

W

m




dinates,
h gives
rison of
, orbital

(3.46)

entirely

¢ by the
dd, P, is

¢ orbital

Cr

(3.49)

r

Deriving Kepler's
we equation (3.43) gives us a relation among 1., o, and e. namecly,

r.;.‘l‘l.l |
m

we can substitule back into equation (3.49) to find

GMal(l

1
-

nize as Kepler's third law, Ko, with the proportionality constant
With somewhat more exertion, taking into account the acceleration of 1he

s M) as well as the lower-mass planet (mass m). it is passible to reach the more

Within the solar system, however, even the most massive of the plancts, Jupiter, has a
mass only 1/1000 that of the Sun, so the approximation M + m 2 M is adeguate.

he masses of eelestial bodies are measured by how they accelerate ncarhy masses. In
particular, we can use the orbital pericds and semimajor axes of the planets 1o determine

the mass of the Sun:

or

The orbital period of the Earth, for instance, is 365.256 davs x 86,400 s day 516
10" s The senmumagor axis of the Earth's orbit is o AU = 1496 x 10" m. Thus. we

can compule the mass of the Sun

6.67 x
198 »

Later in this book, we will find that the solar mass (M) is 2 useful unit for expressing

the masses of stars (and larger objccis)

" A wseful spproximation is that the k
The “donim a circle™ symbod & i5 the standand astnw mb L 1s of great antxquity, bang
dentical 1o the Egypeian hicroglyph for the Sun pod R: o as the first syllable in the name

of the phamaoly Rameses the Greag: |

AL

!

-~

iy
x
»
w.
-
pi
o,
z
o
B4
£
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3.2 = ORBITAL ENERGETICS

Suppose you place a particle of mass /m ata location r relative to an object of mass M,

you give it a kick so that it is initially moving at a velocity ¥v. What determines whether

its orbit is closed (a cirele or ellipse, with ¢ < 1) or open (a parabola o hyperbola, with

- 197 In 2 sense. iUs all about the energy. The particle will have an energy E that is the

;.
sum of its kinetic encrgy K and its gravitationa potential encrgy U
. ' . GMm i
E=K+U= P - — (3.56

r

[he square of the velocity can be determined by squaring equation | 328

b2e0-5+¢-]

-
-
o)
b -3

A, 0N P A 3 o
{ — ] v =14 20 -3+ €. (3.57)
M/
Since @ - J = cos 1, from equation ( 3.3), we may now write the kinetic en
el 1 fGMm\° . - ]
K -t = -m | — ' ( e” 4+ 2ecosd). (3.55)
b 2l \ ‘r f

The Kinetic energy 15 greatest al par ihelion (9 = 0), which is as it should be. since that’s

when the particle is moving fastest. Now using equation | 3.34) for r as a lunction of #,

we can wrile the potential energy as

GMm (GM)y»*m* ,
= gt e —(1 4+ ecosd). (3.5Y)

The amplitude of the /|, is greatest at perihelion (¢ = 0), which IS a5

polenial enery

wticke is closest o the mass M. By adding together

it should be, since t v the |

tic energy {equation 3.58) and the potential energy (eqquation 3.59), 4

bl of rearranging, w find

E=(=—) =(*=1 (3.60)

oy is conserved for this isolated two

This is constant, which 15 as it should be, sur

so. if we s0 choose, write the orbital cocentricity as a function of

body system. We can al:

energy £ and angular momentum L:

e=(1+252) .
\ G=M-m- ;

We can readily identily three distinct cases!

1. Hyperbolic orbits: As we recall from our discussion of conic sections (ps
thecasce = 1 representsahyperbola. Equation (3 60 shows thate = ¢

3.3

Thx

Th
spe

Th

L




) object of mass M

determines whether

Lor hyperbola, with
cnergy £ that is the

(3.57)
C energy as

(3.58)
uld be, since that's
as a function of 4,

(3.59)
= (), which is as

v adding together
3.39), and doing

(3.60)

this isolated two-

IV as o function of

(3.61)

clions (page 68),

* > | corresponds

Orbital Speed

W awial energy £ =0 that is. K =~ I{ |. This is an open orbit; the mass m is

not gravitationally hound to the mass M. The mass m makes 2 sing

passage al ¢ = and does not return—1ts value of r, the distance from the mass

¢ penhelion

M, continues 1o increase monotonically after perihelion passage,

2. Parabolic orbits: In the case where ¢ — | exactly. the mass m is marginally yn-
hound to M; that is, its velocity approaches zero asymptotically as r approaches
nfinity. In the case of a parabolic orbii, equation (3.60) shows that ¢ - 1 cormre
sponds o £ =0, or X U] Equation (3.56) reveals that a parucle will be on a
rarabolic orbit if'its speed is equal to the escape s yeed:
I
3 g W2
.'(: ) e
;-._‘. {¢ ‘ } (s /~.__
| aravay)
Ifits velocity is greater than Uegee 11 Will be on 2 hyperbolic orbit.
3. Elliptical orbits: In the case where ¢ < I the mass m is gravitationally bound:

4l

it 2oes around the mass M on an elliptical orbit, The 1 energy, whene < 1, s

£ <0, cor respon

I case ¢ == Ocorresponds to a per ectly

K < |l7|. The spe
3.60) shows that a circular orbit is the orbit that minimizes
the energy £ for 1 given angular momentum 7,

3.3 = ORBITAL SPEED

[U1s not possible in general 10 obtain a simple equation that gives the time dependence

- ‘e dictance £ N -f2Y A al enemd 5 WVAVST IF 1¢ v .
of a planet’s distance from the Sun, ¢ (). or orbital speed, vir).® However, it is »assible
'

to find the orbital speed v as a sumple function of r, which can be useful. We start w

the equation for a conic section (equation 3.42), which we write in the form
1

n‘:.'—."'.l ’ 7 ot
oSy — (3.05
r
The orbital speed as a function of 9 is given by equation (3,58):
- K ( GMm\~ - y
V= —— = ( — , (1 4+ ¢ 4 2¢ cos ). (3.64)
J
m ‘. !

Thus, by combining equations (3.63) and (3.64). we find an equation that gives the orb
speed as a function of »:

al \
- Lk em 4+ =la(l = ¢7)
L \ r /

ry . . - ~ T ), 3 - 4 )
using equation (3.43), which tells us 17/ m GMa(l — e=), we hnd

Y This also tmplhies that there is no simaple equagion for @(r), sanoe if we had « e, we coulkd use the comic section

or 29w and f 2




e e e e S —

Chapter 3 Oxbital Mechamics 3.5

(r.,\!q ‘ r+=e'r 4+ 2a(l e”) ar
CGMa(l —e) \ /
GM
| I- - B r J
GM [ 2a (2 1) )
= — | 1) =GM | E (3.68

The resulting equation

{2 l Y
' § F . 2
=M |- - - (3.67)
\r o)

is called the vis viva equation. The Latin term vis viva, which translates hierally 1o *livig
e tfried

haie bt of scientific teeminology that was lirst employed by Got

foree, 18 an are

I.cthniz (best known as the other discoverer of calculus). Letbniz used the term ves v

| 2K, or twice the Kinetic cnergy.”

Lo refer to the quantity rre=, what we woukd now ¢

1

vis viva cquation is a statement ol how the kinetic energy of an orbiting object ¢h

as a function of r, By using Kepler's third law (equation 3.52), we can also wrile the v

§

viver equation in the form

/2 b
2.. a _‘i. \ 3 h
) | 2- l’ = (368
2] \

This implies that the orbital 2

Lid a
{7 = l 2 | 3 (0] {
Pr\ )
ot
AL perthelion, where r = ¢ = a(l — ¢), the angular speed of the planct is P
172 Ir
7wl e |
Do = : - (3.7
LA | [ -
and at aphelion, sr o (- all + ¢), the angular speed is
2w (1 )= -
1 (3.7
Jn r
- P {l+e)

Here on Earth, for instance, the observed average angular speed ol the Sun along b T

echiptic 15 equal o 27 radians per silereal year, or e = 0.986° /day. However, since the 2
Earth’s orbit has an cocentricity ¢ = 0.7, the observed angular speed 15 greatest at the
time of perihelion (early January). when . = 1.0207 fday. and smallest at the tme o
aphelion {carly July), when a,, — (L9537 /day
An interesting application of the vis viva cguation (eg. 3.68) addresses the pre
of the transfer orbit. In traveling from the Earth to another planet, the transfer orbl
is the route you would take Irom the Earth 1o the other planet’s orbit, The Hohmana
9

transfer orbit, illustrated in Figure 3,10, 15 an ellipse whose perihelion is at the orbitof




(3.67)

to “living
Goufried
n VS viva
Iy, The
L changes

ite the vis

(3.69)

(3.71)

along the
since the
st at the
¢ time of

problem
sfer orbat
lohmann
¢ orbil of

.I .
| Ezrth a1 linch

FIGURE 3.10 A Hohmann transfer orbit fur interplanetary travel (here |

Earth to Mars). The transfer orbit is an ellipse with its peribelion a1 Eanth and its

aphelion at the orbat of Mars.,

the inner planet and whose aphelion is at the orbit of the outer planet. As the German

engineer Walter Hohmann pointed out in the 1920%, the Hohmann transfer orbit has two

destrable properties. First, 1t requires only two engine burns when done properly: one

when leaving E and one when the destination planct is reached. The rest he time,
the ecral “coasting” on a Newloman orbil. Second, it 18 cconomical s luel
usc; launching your spacecraft on a hyperbolic orbit will cause it to reach its destination
laster bul H'\:|I'X‘L"- mose Cnl‘l‘;f.‘.

As a concrete example, suppose you want to send a spacecraft to Mars. As a first
approximation, we can assume that the orbit of the Earth isacircle of radius a;, = | AU =

3 2 A8 . .
orbit of Mars 1s a larger circle, of radius o 1,525 = 2.27 x 10° km, with orbital
period Py = L8R yr=35.94 x 10" 5. The

Irom Earth to Mars 1s
U+ 1.52 Al

= .26 AU.

The orbital period lor the transler orbit

P

| yrl
[raveling from Earth 10 Mars requires half
260 days.
= average speed of the Earth on its oghit is
2w (150 x 10° km) o
- —_—— =298 km s

hx 107s

T Yeross an o carcle” symbal (D as the standand as I symbod tor the Banth

ks e EARGR o - N7 . 9L ¢ 5
1,500 x 10° km, withorbital period £, = | = 3,16 x 10" s.” We further assume that the

AWONOULSY B SOISAM S
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1 of Mars s slower

Y ' .
- O ars L\ L) A

Potass Suod x 10 s

—24.0kms™", (3.75)

1, it is at the peribelion of the Hohmann transies

hen the spacecraft has just lelt the |

orbit. Its speed. lrom the vis viva equation (eg. 3.68), 1s

, JEp [ 20
2ra, 77N
L - ( —_ — |
X ) \

2 (1.26 AUNLSO x 108 km AU ™) (m 26 ALY

(1L41yn)3.16 x 17 syr ") L LODAU

=26.7kms ™ '(1.52)'* =329kms~". (3.76)

Thus, at the perhelion of the Hohmann transfer orbit, the spacecralt must be goi
Y an amounl Av = ¥p — Vg = 3.1kms ' When the spacecrafi

faster than the Earth b -
is just reaching Mars, it is at the aphelion of the Hohmann transfer orbit. Its speed, [rom

equation (3.68), is then

\ 12 . - T 2
=y, \ 2(1,26 AL . 5
Ve = —_— I‘ 26.7kms | ———= | 21.7kms L. (3.7
Fo: \Opgar / 1.52 AU

Thus, in order to match its velocity to that of Mars, the spacecrall must inerease its spoed
> I

by AU = Uyyn — Uy = 2.3km s 7, (I you want your spacecralt 1o £o nto orbit around

Mars. like the Mars Reconnaissance Orbirer, the time. direction, and duration of your

il 1O attain.)

engine burn depend on the orbital parameters you wa

Use of a Hohmann transfer orbit requires careful tming. If vou are sending a space-

for instance, the crafl must reach the aphelion of its orbit just as Mars

s that point, This restricts launches to certaim tmes, known as launch windows

b window, you could wait for one synodic pe

If you fail to launch during ane L

of the target planet before launching agm, For & mission to Mars, whose synodie pesid

is 2.1 years, this could be a frustrating wait.

THE VIRIAL THEOREM

, ri(#). Similarly.
's Kinetic cnergy A(0) @

v . n~A E g A
sechon 3.2 _"I‘_'All‘- \;!l]?k‘ lormulas lor the |li:n:;';

14

energy |

d potentid

Tidd hile Cortiaan 2 2 = arne s itw AL PRl ~n 4 By BRAEEN paSae 'y Ins
(&), while Section 5.5 g2ives the vis viva equation for o as a iuncton of 7. ina
system containing more than two bodies, however, there are no longer any simple analytic

solutions for the bodies™ properties. Thus, when astronomers study large stellar systems

such as star clusters and galaxies, they generally use numerical techniques to compute the

stellar orbils using @ computer. wever, despite the complexity of many-body systems
§ | 2 J J =)

such as star clusters, i is possible 1o find useful statistical results that describe the average

2
. ]




he Vinal Theor

perties of the system.
unelic energy ol a system to its ttal potential eneray.
erive the vinal theorem, let's suppase we have a svslem contain

Gl

planets, or other compact massive bodies), The mass of the ith star is

ransier
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Chapter 3 Orbital Mechanics

times, and the right-hand side of equation {3.82) goes 10 zero in the mat v > o0, Thus §

for any bound system of particles, the time-averaged virial theorem has the form i

The vinal theorem as expressed in equation (3.83) can be applied to any bound system,
for instance. to a gas of molecules enclosed within a box, However, as astronomers. we
are interested in the specilic case ol an isolated bound stellar system., in which the fooe
acting on the ith star is the sum of the gravitational forees exerted by the other v

stars in the system;

- (./'l.'l M ':, - I; |
Fi=) ———— (3.54]
a— ¢, — ¢ ]

(!

For such a system, what is the value of the virial, 3 F; - #,? Let’s start with a simpk

ming only two stars. For this system, the virial will be

system co

o - Gmma(Fy — 1) -T Gotam | (T) — T} - T
Fo-f+Fr a2 xl | 4 x Lt B
[ry — 1yl r; - ol

The right-hand side of equation (3.85) is simply the potential energy I of the two-star
system. By extension, for & three-star system, the virial will be equal to the sum of
2). {2.3), and (3.1). For a system containing

the potential energies ol all three pairs: {

N stars, the virial will be equal 1o the sum of the potential energies of all N, =

N{N — 1)/2 paurs of stars that can be drawn from the system. We can thus write

N \
3 Ty ] Y‘ S ) {3,586
e A . - o

iml Twi ry—r;|

and the virial equation {eq. 3.83) becomes

2K} +(U) =0 (3.87)

[he virial theorem is useful 10 astronomers, as we find in Section 20.2. when it enables

us to estimate the mass ol distant




