

ASTRYPHYS 3070: Foundations Astronomy

Week 4 Tuesday

Today's Agenda

- Kirchoff's laws & Lines shift
- Lines broaden
- Radiative Transfer
- Equilibrium / blackbody spectrum
 - (as much as we get to)

Announcements / Reminders

- Read Chapter 5, 6.1, 6.4-7
- HW 3 due September 17th at 11:59pm via Canvas upload
- HEAP talk at 4pm in INSCC auditorium
 - Former U student (now at NASA Ames) talks about haze in planetary atmospheres

Spectra are like Fingerprints

They encode what and how much of an element is present in a gas (of a cloud, star, etc.), how hot it is, and whether it's being excited by something else

Each element has a unique pattern of lines, which can be seen in absorption or emission

$$\Delta E = E_n - E_{n'} =$$
(13.6 eV) $Z^2 \left[\frac{1}{(n')^2} - \frac{1}{n^2} \right]$

ASTR/PHYS 3070: Foundations Astronomy

3

unshifted Longer wavelength Lower frequency "redshifted" unshifted

Allows us to infer motions along the "line of sight"

Doppler Shift

"blueshifted"

Shorter wavelength Higher frequency

$$z = \frac{\Delta \lambda}{\lambda} = \frac{\Delta \nu}{\nu}$$

Practice with redshift

- You measure the spectrum of a star and see an absorption line at a wavelength of 530 nm from an element with a laboratory absorption line at 540 nm.
 - What is the star's redshift? Is it moving toward or away from us?
 - How fast is it moving toward/away from us? What's its total velocity?
- What if instead you measured the frequency to be 5.3x10¹⁴ Hz (with rest frequency 5.4x10¹⁴ Hz)?

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Motion-induced Broadening (small Doppler shifts cause lines to appear more broad)

- Thermal Broadening
- Rotational Broadening
- Turbulent Broadening

Other Types of Broadening

- Natural Broadening
- Pressure Broadening
- Zeeman Broadening

Natural Broadening

$$\frac{dN_{\text{phot}}}{dt} = n_2 A_{21}$$

$$A_{21} \sim 10^8 \ {
m s}^{-1}$$
 (permitted) $\sim 1 \ {
m s}^{-1}$ (forbidden)

Heisenberg uncertainty principle

$$\Delta x \cdot \Delta p \gtrsim \hbar$$

$$(\frac{\Delta x}{c})(\Delta p \cdot c) \gtrsim \hbar$$

$$\Delta t \cdot \Delta E \gtrsim \hbar$$

Broadened Line Shapes

Standard Deviations

$$(\nu - \nu_0)/\sigma$$

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

ASTR/PHYS 3070: Foundations Astronomy

Fall 2021: Week 04a

Doppler Broadening

Thermal Broadening

Velocity distribution of particles in thermal equilibrium have a Maxwell-Boltzmann distribution

$$F(v)dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

$$F(E)dE = F(v)\frac{dv}{dE} = \frac{2}{\sqrt{\pi kT}} \left(\frac{E}{kT}\right)^{1/2} \exp\left(-\frac{E}{kT}\right)$$

$$\langle x \rangle = \int x f(x) dx$$

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}} \qquad \langle E \rangle = \frac{3}{2}kT$$

Avg. particle speed

Avg. particle kinetic energy

Doppler Broadening

Thermal Broadening ne-of-sight "velocity dispersion"

line-of-sight "velocity dispersion" (width of a Gaussian distribution)

$$\sigma_{\rm los} = \left(\frac{kT}{\mu m_p}\right)^{1/2} \approx 100 \text{ m s}^{-1} \left(\frac{T}{1 \text{ K}}\right)^{1/2} \mu^{-1/2} \longrightarrow \frac{\Delta \lambda}{\lambda} \approx \frac{\sigma_{\rm los}}{c}$$

ASTR/PHYS 3070: Foundations Astronomy

Lines are not delta functions!

i.e., the difference b/t energy levels is NOT exact

Motion-induced Broadening (small Doppler shifts cause lines to appear more broad)

- Thermal Broadening
- Rotational Broadening

Fall 2021: Week 04a

Radiative Transfer / mfp / optical depth / Blackbody Spectra