

ASTR/PHYS 3070: Foundations Astronomy

Week 9 Tuesday

Today's Agenda

- Exoplanet populations
- Star masses from binaries
- Magnitude system
- Practice with magnitudes

Announcements / Reminders

- HW 6 due Friday 1min before midnight
- Read Chapter 13
- HEAP talk at 4pm on Thursday
 - Spica: its stars and nebula
- Colloquium at 2pm on Friday
 - Breaking the Myth of the "Non-Traditional" Physicist: The Real Story About Employment for Physics Graduates

Direct Imaging

Planet millions of times fainter Need to mask the starlight

Can't see the planet, but can see the star

Transit Method

Starlight is blocked by the planet, reducing the amount of light detected from the star

Exoplanet Detections

Transit Light Curves

Kepler-11 System (6 planets)

Keper BY THE NUMBERS

9.6 YEARS IN SPACE

3.12 FUEL USED

MISSIONS COMPLETED

2,946 SCIENTIFIC PAPERS PUBLISHED

732,128 COMMANDS **EXECUTED**

TESS: Transiting Exoplanet Survey Satellite

What do we know about planets in general?

- Planets are more numerous in the Galaxy than stars!
- Smaller, rocky planets are common (20-50% of stars should have at least 1)
- Solar system is a little weird
 - Most common planet is b/t Earth and Neptune in mass
 - Many systems are more compact than the solar system

exoplanets.nasa.gov

Fall 2021: Week 09a

Measuring Stars

Binaries: use same methods as with planets

Spectroscopic Binary

Measuring Stars

Parallax

$$d = \frac{1 \text{ pc}}{\pi''}$$

Inverse Square Law

$$F = \frac{L}{4\pi d^2}$$

Effective Temperature

$$T_{
m eff} = \left(rac{L}{4\pi R^2 \sigma_{
m SB}}
ight)^{1/4}$$
 Distance Modulus $m-M = 5\log\left(rac{d}{10~
m pc}
ight)$

$$m_2 - m_1 = 2.5 \log(F_1/F_2)$$

Apparent Magnitude

$$m = C - 2.5 \log(F)$$

Absolute Magnitude

$$M_{\rm bol} = 4.74 - \log (L/L_{\odot})$$

$$m - M = 5 \log \left(\frac{d}{10 \text{ pc}} \right)$$

Practice with Magnitudes

Consider 2 stars in a binary system, A & B. A is brighter, and the difference in their magnitudes is 2.5. If $m_B = 10$, what is m_A ?

If the parallax angle to the system is 0.025", what is the absolute magnitude of star B? What is the difference in absolute magnitudes between the 2 stars?

Another star elsewhere in the sky is found to have a very similar spectrum to star B. Assuming their intrinsic properties are similar and this star has a magnitude of 15, how far away is it?