

ASTR/PHYS 3070: Foundations Astronomy

Today's Agenda

- ISM intro
- Group problem
- ISM outro
- Star formation
- Evolution of a low mass star

<u>Announcements / Reminders</u>

- HW 8 (& 7.3) due Friday 1min before midnight
- Read Chapters 17 & 18
- Midterm 2 next Thursday!!!!
- HEAP talk at 4pm on Thursday
 - CFTs Blueshift Tensor Fluctuations Universally
- Colloquium at 2pm on Friday
 - Lithium-ion Batteries

Interstellar Medium (ISM)

All the diffuse stuff in b/t stars and other compact objects in the MW

Neutral H (21cm; radio)

Balmer line n=3->2 (656.3 nm)

CO (2.6 mm; microwave)

ASTR/PHYS 3070: Foundations Astronomy

Stars (visible)

Gas (ionized, neutral, molecules),
Dust (large molecules, singly or in
clumps), & relativistic components
(magnetic fields, cosmic rays)

Dust blocks starlight: Extinction

ASTR/PHYS 3070: Foundations Astronomy

Extinction messes up magnitudes AND colors

$$F_{\lambda} = F_{0,\lambda}e^{-\tau} = F_{0,\lambda}e^{-n\sigma r}$$

$$m_{\text{obs}} = C - 2.5 \log(F)$$

= $C - 2.5 \log(F_0) - 2.5 \log(e^{-\tau})$
= $m_0 + 2.5\tau \log e$
= $m_0 + 1.086\tau$

Correcting Magnitudes

$$m_{\text{obs}}(\lambda) = m_0(\lambda) + A(\lambda)$$

e.g., $m_{V,\text{obs}} = m_V + A_V$
 $= V_0 + A_V$

Correcting Colors

$$(B - V)_{\text{obs}} = (B - V)_0 + (A_B + A_V)$$

= $(B - V)_0 + E(B - V)$

$$R \equiv \frac{A_V}{E(B-V)} \approx 3.1$$

Group Problem

Imagine you observe 2 stars that have the same spectral (but not necessarily luminosity) type.

$$m_{V,1} = 15$$
 $m_{V,2} = 21$ $m_{B,1} = 15.5$ $m_{B,2} = 22.5$

Assuming one of the stars has an $A_V = 0$, what is the extinction toward the other star?

What is the optical depth toward that star in the B band?

Assuming both stars have the same distance from us, what can you say about their luminosity classes?

Detection of gas is generally more direct

Absorption & Emission Lines (Kirchoff's laws)

Radio continuum

ISM also contains very hot gas heated by SNe

ASTR/PHYS 3070: Foundations Astronomy

All these gas "phases" are in pressure equilibrium

Cold Molecular Clouds:

 $T \sim 10 \text{ K}, \quad n \sim 10^9 \text{ m}^{-3}$

Cold Neutral Medium:

 $T \sim 100 \text{ K}, \quad n \sim 10^8 \text{ m}^{-3}$

Warm Neutral Medium:

 $T \sim 7000 \text{ K}, \quad n \sim 10^5 \text{ m}^{-3}$

Warm Ionized Medium:

 $T \sim 10,000 \text{ K}, \quad n \sim 10^6 \text{ m}^{-3}$

Hot Ionized Medium:

 $T \sim 1,000,000 \text{ K}, \quad n \sim 10^4 \text{ m}^{-3}$

 $P \sim nkT \sim const.$

Star Formation & Evolution

"Star" —> undergoing fusion

Formed from clouds of gas that collapse due to self-gravity

ASTR/PHYS 3070: Foundations Astronomy

Forming a Star

Formed from clouds of gas that collapse due to self-gravity

Imagine a gas particle on an orbit with e = 1

$$P^2 = \frac{4\pi^2}{G} \frac{a^3}{M}$$

Halfway through the orbit, it reaches the center

$$t_{\rm ff} = \frac{P}{2} = \frac{2\pi}{2G^{1/2}} \frac{(r_0/2)^{3/2}}{M^{1/2}}$$
$$= \frac{\pi}{G^{1/2}} \frac{r_0^{3/2}}{(8 \cdot 4\pi r_0^3 \rho_0/3)^{1/2}}$$

$$t_{\rm ff} = \left(\frac{3\pi}{32G\rho_0}\right)^{1/2}$$

"Star" —> undergoing fusion

Formed from clouds of gas that collapse due to self-gravity

Pressure in the gas can keep the cloud from collapsing

-> HSE

BUT, once a cloud of a given density and temperature reaches a critical size, it will collapse

-> Jeans length

If density and size is determined, also have a critical mass —> <u>Jeans mass</u>

As a cloud collapses, density and temperature will change, causing the Jeans length and mass to shrink so the cloud fragments —> <u>fragmentation</u>

1 cloud produces many stars: a star cluster

"Star" —> undergoing fusion

Formed from clouds of gas that collapse due to self-gravity

Pressure in the gas can keep the cloud from collapsing

—> HSE

BUT, once a cloud of a given density and temperature reaches a critical size, it will collapse

-> Jeans length

$$t_{\mathrm{ff}} < t_{\mathrm{press}} = \frac{r_0}{c_s}$$

$$c_s = \left(\frac{\gamma kT}{\mu m_p}\right)^{1/2}$$

Protostars form from an "accretion disk"

Angular momentum dissipated in the disk

>99.9% of mass in the protostar, but planets with much less mass typically carry more angular momentum (which originates from the cloud)

ASTR/PHYS 3070: Foundations Astronomy

Fall 2021: Week 11b

ASTR/PHYS 3070: Foundations Astronomy

Fall 2021: Week 11b

Fall 2021: Week 11b

Again, this time with feeling!

Size changes along with temperature

red giant

Globular Cluster Color-Magnitude Diagram

